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Notes & URLs for this presentation can be found… 

» underneath the link to this slide on granneman.com 
» at files.granneman.com/presentations/webdev/CSS-

Animation.txt

http://files.granneman.com/presentations/webdev/CSS-Animation.txt


Data Types



4 data types specifically useful with animation 

<shape>

<time>

<timing-function>

<angle>



<shape>



<shape>

Represents a rectangular region to which the clip 
property is applied 

Defined using the rect() function



rect(top, right, bottom, left)

top: <length> of distance between top of rectangle & top 
border of its container box 

right: <length> of distance between right of the rectangle & 
left border of its container box 

bottom: <length> of distance between bottom of rectangle & 
top border of its container box 

left: <length> of distance between left of the rectangle & left 
border of its container box





<shape> 8 1.3 1 1 ? ?



<time>



<time>

Represents time, which keeps on slipping into the 
future: a <number> immediately followed by a unit 

Units 
» s: second 
» ms: millisecond (1000ms = 1s)



Valid Invalid

7s 0

-7ms 7

7.7s 7 s

+0s

Needs a unit

No spaces

0 needs a unit



<time> 9 <3.2 <11 4 ? ?



<timing-function>



<timing-function>

Represents an acceleration curve showing speed of 
change over time during animations & transitions 

2 kinds of timing functions: 
» cubic Bézier curves (AKA easing functions) 
» staircase functions: equidistant steps



Values for cubic Bézier curves 

» linear 
» ease 
» ease-in 
» ease-out 
» ease-in-out 
» cubic-bezier(x1, y1, x2, y2)





linear

Constant speed 

Equivalent to 
cubic-bezier(0.0, 0.0, 

1.0, 1.0)



ease

Accelerates at beginning 

Starts to slow by middle 

Equivalent to: 
cubic-bezier(0.25, 

0.1, 0.25, 1.0)



ease-in

Begins slowly 

Accelerates progressively 

Stops abruptly 

Equivalent to 
cubic-bezier(0.42, 

0.0, 1.0, 1.0)



ease-out

Starts quickly 

Slows progressively down 
to a gentle stop 

Equivalent to 
cubic-bezier(0.0, 0.0, 

0.58, 1.0)



ease-in-out

Starts slowly 

Accelerates then slows 
when approaching end 
to a gentle stop 

Equivalent to 
cubic-bezier(0.42, 

0.0, 0.58, 1.0)





cubic-bezier(x1, y1, x2, y2)

Defines a cubic Bézier curve, which is defined by 4 
points: 

» P0: curve’s initial time & state (always 0, 0 in CSS) 
» P1: (defined by x1 & y1) 
» P2: (defined by x2 & y2) 
» P3: curve’s final time & state (always 1, 1 in CSS) 

x must be a <number> between 0 & 1

y must be a <number> (if outside 0-1, you may get a 
bouncing effect)





matthewlein.com/ceaser/







Values for staircase functions 

» step-start 
» step-end 
» steps(number-of-steps, direction)



step-start

Animation jumps 
immediately to the end 
state & stays until end of 
animation 

Equivalent to steps(1, 
start)



step-end

Animation stays in initial 
state until the end, when it 
jumps directly to its final 
position 

Equivalent to steps(1, 
end)



steps(number-of-steps, direction)

number-of-steps: positive <integer> representing the 
amount of equidistant “steps” in the stepping function 

direction: keyword indicating if the function is left- or 
right-continuous 

2 values 
» start: left-continuous function, so the 1st step happens 

when the animation begins 
» end: right-continuous function, so the last step happens 

when the animation ends



<timing-function> 10 3.1 4 4 4 2

cubic-bezier() 10 8 16 4 Y —

steps() 10 5.1 8 4 4 5



<angle>



<angle>

Represents angle values: <number> data type 
immediately followed by a unit 

Units 
» deg: degrees (1 full circle is 360deg) 
» grad: gradians (1 full circle is 400grad) 
» rad: radians (1rad is 180/π degrees , so 1 full circle is 

2π radians—approximately 6.2832rad) 
» turn: number of turns (1 full circle is 1turn)



Positive angles represent right angles, negative angles 
represent left angles



Right angle 

90deg

100grad

0.25turn

≈ 1.5708rad



Flat angle 

180deg

200grad

0.5turn

≈ 3.1416rad



Right angle (towards the 
left) 

−90deg

−100grad

−0.25turn

≈ −1.5708rad



<angle> 9 4 2 3.6 ? ?



Animation



Animation 

Depicting visual change over time



Animation does not have to be motion 

Can be: 

» color 
» position 
» rotation 
» border-width 
» border-radius 
» & many more! 
» … but not all 

Mozilla Developer Network has a list of animatable 
properties



Animation is kicked off by an animation event 

» Page load 
» Hover 
» Click 
» Scrolling 
» & much more!



CSS supports 2 kinds of animation 

» transition: animates styles between 2 states (sets of 
styles) 
» animation: animates styles between 2 or more 
keyframes (as many as necessary), each with their own 
state



transition



A transition animates styles between 2 states, where 
states are 2 sets of styles



transition-property

transition-duration

transition-timing-function

transition-delay

transition



All 4 properties are part of a transition 

transition-property: all

transition-duration: 0s

transition-timing-function: ease

transition-delay: 0s

If you leave a property set to a default, you don’t need 
to list the property



transition-property

Defines property or properties to be animated



transition-duration

Defines how long animation takes from start to finish 

Specified using <time> data type



transition-timing-function

Defines acceleration curve of the animation 

Specified using <timing-function> data type



transition-delay

Amount of time before animation begins after the 
animation event 

Specified using <time> data type



transition

Shorthand for transition-property, transition-
duration, transition-timing-function, and 
transition-delay 

transition: width 2s, height 2s, background-

color 2s, transform 2s;







<timing-function> 10 3.1 4 4 4 2

cubic-bezier() 10 8 16 4 Y —

steps() 10 5.1 8 4 4 5



animation



Animates through keyframes 

Instead of state A to state B, you use multiple 
keyframes (as many as necessary), each with their own 
state



Keyframes defined by 
@keyframes, a nested 
group of rulesets

@keyframes rainbow {

  0% {

    color: red;

  }

  50% {

    color: yellow;

  }

  100% {

    color: blue;

  }

}



animation-name

animation-duration

animation-timing-function

animation-delay

animation-direction

animation-iteration-count

animation-fill-mode

animation-play-state

animation



animation-name

@keyframes ruleset name, defined by developer



animation-duration

Defines how long animation takes from start to finish 

Specified using <time> data type



animation-timing-function

Defines acceleration curve of the animation 

Specified using <timing-function> data type



animation-delay

Amount of time before animation begins after the 
animation event 

Specified using <time> data type



animation-direction

Order keyframes are stepped through 

Values 
» normal: play forward each cycle (default) 
» reverse: play backward each cycle 
» alternate: reverse direction each cycle, reversing 

animation steps & timing functions 
» alternate-reverse: play backward on 1st play-through, 

then forward on next, then continue to alternate



animation-iteration-count

How many times animation runs 

Values 
» <number>: number of times to repeat (1 is the default) 
» infinite: repeat forever



animation-fill-mode

Specifies which keyframe to use before & after execution 

Values 
» none: do not continue styles from 1st or last keyframe 

(default) 
» forwards: continue styles from last keyframe after 

animation 
» backwards: styles from 1st keyframe used from start of 

animation event (during animation-delay) 
» both: styles from 1st keyframe used during animation-
delay, & styles from last keyframe persist after 
animation



animation-play-state

Determines whether an animation is running or 
paused 

Can be queried & set by JavaScript





<timing-function> 10 3.1 4 4 4 2

cubic-bezier() 10 8 16 4 Y —

steps() 10 5.1 8 4 4 5



Thank you! 
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Changelog 

2014-08-04 1.2: Added compatibility charts; added 
explanations of animations & transform; moved 
transform section to “ShapesDecorating with CSS” 
2014-05-15 1.1.1: Clarified some things & fixed others



Licensing of this work 

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 
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» Share — copy and redistribute the material in any medium or format 
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made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you 
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Share Alike. If you remix, transform, or build upon the material, you must distribute your contributions 
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No additional restrictions. You may not apply legal terms or technological measures that legally restrict 
others from doing anything the license permits. 
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