
CSS Animation
Visual Change Over Time

© 2014 R. Scott Granneman 
Last updated 2014-08-04  

You are free to use this work, with certain restrictions. 
For full licensing information, please see the last slide/page.

R. Scott Granneman

Jans Carton

1.2

Notes & URLs for this presentation can be found…

» underneath the link to this slide on granneman.com
» at files.granneman.com/presentations/webdev/CSS-

Animation.txt

http://files.granneman.com/presentations/webdev/CSS-Animation.txt

Data Types

4 data types specifically useful with animation

<shape>

<time>

<timing-function>

<angle>

<shape>

<shape>

Represents a rectangular region to which the clip
property is applied

Defined using the rect() function

rect(top, right, bottom, left)

top: <length> of distance between top of rectangle & top
border of its container box

right: <length> of distance between right of the rectangle &
left border of its container box

bottom: <length> of distance between bottom of rectangle &
top border of its container box

left: <length> of distance between left of the rectangle & left
border of its container box

<shape> 8 1.3 1 1 ? ?

<time>

<time>

Represents time, which keeps on slipping into the
future: a <number> immediately followed by a unit

Units
» s: second
» ms: millisecond (1000ms = 1s)

Valid Invalid

7s 0

-7ms 7

7.7s 7 s

+0s

Needs a unit

No spaces

0 needs a unit

<time> 9 <3.2 <11 4 ? ?

<timing-function>

<timing-function>

Represents an acceleration curve showing speed of
change over time during animations & transitions

2 kinds of timing functions:
» cubic Bézier curves (AKA easing functions)
» staircase functions: equidistant steps

Values for cubic Bézier curves

» linear
» ease
» ease-in
» ease-out
» ease-in-out
» cubic-bezier(x1, y1, x2, y2)

linear

Constant speed

Equivalent to
cubic-bezier(0.0, 0.0,

1.0, 1.0)

ease

Accelerates at beginning

Starts to slow by middle

Equivalent to:
cubic-bezier(0.25,

0.1, 0.25, 1.0)

ease-in

Begins slowly

Accelerates progressively

Stops abruptly

Equivalent to
cubic-bezier(0.42,

0.0, 1.0, 1.0)

ease-out

Starts quickly

Slows progressively down
to a gentle stop

Equivalent to
cubic-bezier(0.0, 0.0,

0.58, 1.0)

ease-in-out

Starts slowly

Accelerates then slows
when approaching end
to a gentle stop

Equivalent to
cubic-bezier(0.42,

0.0, 0.58, 1.0)

cubic-bezier(x1, y1, x2, y2)

Defines a cubic Bézier curve, which is defined by 4
points:

» P0: curve’s initial time & state (always 0, 0 in CSS)
» P1: (defined by x1 & y1)
» P2: (defined by x2 & y2)
» P3: curve’s final time & state (always 1, 1 in CSS)

x must be a <number> between 0 & 1

y must be a <number> (if outside 0-1, you may get a
bouncing effect)

matthewlein.com/ceaser/

Values for staircase functions

» step-start
» step-end
» steps(number-of-steps, direction)

step-start

Animation jumps
immediately to the end
state & stays until end of
animation

Equivalent to steps(1,
start)

step-end

Animation stays in initial
state until the end, when it
jumps directly to its final
position

Equivalent to steps(1,
end)

steps(number-of-steps, direction)

number-of-steps: positive <integer> representing the
amount of equidistant “steps” in the stepping function

direction: keyword indicating if the function is left- or
right-continuous

2 values
» start: left-continuous function, so the 1st step happens

when the animation begins
» end: right-continuous function, so the last step happens

when the animation ends

<timing-function> 10 3.1 4 4 4 2

cubic-bezier() 10 8 16 4 Y —

steps() 10 5.1 8 4 4 5

<angle>

<angle>

Represents angle values: <number> data type
immediately followed by a unit

Units
» deg: degrees (1 full circle is 360deg)
» grad: gradians (1 full circle is 400grad)
» rad: radians (1rad is 180/π degrees , so 1 full circle is

2π radians—approximately 6.2832rad)
» turn: number of turns (1 full circle is 1turn)

Positive angles represent right angles, negative angles
represent left angles

Right angle

90deg

100grad

0.25turn

≈ 1.5708rad

Flat angle

180deg

200grad

0.5turn

≈ 3.1416rad

Right angle (towards the
left)

−90deg

−100grad

−0.25turn

≈ −1.5708rad

<angle> 9 4 2 3.6 ? ?

Animation

Animation

Depicting visual change over time

Animation does not have to be motion

Can be:

» color
» position
» rotation
» border-width
» border-radius
» & many more!
» … but not all

Mozilla Developer Network has a list of animatable
properties

Animation is kicked off by an animation event

» Page load
» Hover
» Click
» Scrolling
» & much more!

CSS supports 2 kinds of animation

» transition: animates styles between 2 states (sets of
styles)
» animation: animates styles between 2 or more
keyframes (as many as necessary), each with their own
state

transition

A transition animates styles between 2 states, where
states are 2 sets of styles

transition-property

transition-duration

transition-timing-function

transition-delay

transition

All 4 properties are part of a transition

transition-property: all

transition-duration: 0s

transition-timing-function: ease

transition-delay: 0s

If you leave a property set to a default, you don’t need
to list the property

transition-property

Defines property or properties to be animated

transition-duration

Defines how long animation takes from start to finish

Specified using <time> data type

transition-timing-function

Defines acceleration curve of the animation

Specified using <timing-function> data type

transition-delay

Amount of time before animation begins after the
animation event

Specified using <time> data type

transition

Shorthand for transition-property, transition-
duration, transition-timing-function, and
transition-delay

transition: width 2s, height 2s, background-

color 2s, transform 2s;

<timing-function> 10 3.1 4 4 4 2

cubic-bezier() 10 8 16 4 Y —

steps() 10 5.1 8 4 4 5

animation

Animates through keyframes

Instead of state A to state B, you use multiple
keyframes (as many as necessary), each with their own
state

Keyframes defined by
@keyframes, a nested
group of rulesets

@keyframes rainbow {

 0% {

 color: red;

 }

 50% {

 color: yellow;

 }

 100% {

 color: blue;

 }

}

animation-name

animation-duration

animation-timing-function

animation-delay

animation-direction

animation-iteration-count

animation-fill-mode

animation-play-state

animation

animation-name

@keyframes ruleset name, defined by developer

animation-duration

Defines how long animation takes from start to finish

Specified using <time> data type

animation-timing-function

Defines acceleration curve of the animation

Specified using <timing-function> data type

animation-delay

Amount of time before animation begins after the
animation event

Specified using <time> data type

animation-direction

Order keyframes are stepped through

Values
» normal: play forward each cycle (default)
» reverse: play backward each cycle
» alternate: reverse direction each cycle, reversing

animation steps & timing functions
» alternate-reverse: play backward on 1st play-through,

then forward on next, then continue to alternate

animation-iteration-count

How many times animation runs

Values
» <number>: number of times to repeat (1 is the default)
» infinite: repeat forever

animation-fill-mode

Specifies which keyframe to use before & after execution

Values
» none: do not continue styles from 1st or last keyframe

(default)
» forwards: continue styles from last keyframe after

animation
» backwards: styles from 1st keyframe used from start of

animation event (during animation-delay)
» both: styles from 1st keyframe used during animation-
delay, & styles from last keyframe persist after
animation

animation-play-state

Determines whether an animation is running or
paused

Can be queried & set by JavaScript

<timing-function> 10 3.1 4 4 4 2

cubic-bezier() 10 8 16 4 Y —

steps() 10 5.1 8 4 4 5

Thank you!

scott@granneman.com
www.granneman.com
ChainsawOnATireSwing.com
@scottgranneman

jans@websanity.com
websanity.com

CSS Animation
Visual Change Over Time

© 2014 R. Scott Granneman 
Last updated 2014-08-04  

You are free to use this work, with certain restrictions. 
For full licensing information, please see the last slide/page.

R. Scott Granneman

Jans Carton

1.2

Changelog

2014-08-04 1.2: Added compatibility charts; added
explanations of animations & transform; moved
transform section to “ShapesDecorating with CSS”
2014-05-15 1.1.1: Clarified some things & fixed others

Licensing of this work

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.
 

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

You are free to:

» Share — copy and redistribute the material in any medium or format
» Adapt — remix, transform, and build upon the material for any purpose, even commercially

Under the following terms:

Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you
or your use. Give credit to:

Scott Granneman • www.granneman.com • scott@granneman.com

Share Alike. If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

No additional restrictions. You may not apply legal terms or technological measures that legally restrict
others from doing anything the license permits.

Questions? Email scott@granneman.com

