
CSS Flexbox
Flexible, Robust Line-Based Layout

© 2017 R. Scott Granneman
Last updated 2023-10-23

You are free to use this work, with certain restrictions.
For full licensing information, please see the last slide/page.

R. Scott Granneman r Jans Carton

3.7

Flexbox is for laying out elements in a particular
direction along a (sometimes wrapped) line

❶ ❷ ❸ ❹ ❺ ❻ ❼

❽ ❾ ❿

Terms

Flex Container

Flex Items

Cross Axis: perpendicular

to the main axis (! or ↔)

Main Axis: primary axis on which flex

items are laid out (↔ or !)

Main Start Main End

Cross Start

Cross End

Assumes flex-direction: row

Flex Item Cross SizeFlex Item Main Size

Flex Container Main SizeFlex Container Cross Size

Cross Axis:

perpendicular

to the main axis

(↔ or !)

Main Axis: primary

axis on which flex

items are laid out

(! or ↔)

Cross Start

Cross End

Main Start

Main End
Assumes flex-direction: column

Flex Container

Main Size

Flex Container

Cross Size

Flex Item

Main Size

Flex Item

Cross Size

On the following slides, you’ll see these symbols

Flex container

Flex items

Main axis

Cross axis ↕

↔↔

display: flex
display: inline-flex

flex-direction
flex-wrap
flex-flow

justify-content
align-content

place-content

align-items

column-gap

row-gap

gap

order

align-self

flex-grow

flex-shrink

flex-basis

flex

Triggering
Flexbox Layout

display: flex (<inside>)
display: block flex (<outside> <inside>)

Triggers flex layout for the container box:

» Flex container box stacks (because block)
» Immediate children become flex items

display: inline-flex

Generates an inline box that behaves according to
the flexbox model:

» Generates atomic inline box — an inline box that does
not break across lines (just like display: inline-
block)

» Immediate children become flex items
» Changes the layout mode inside it

display:

flex 8* 12 28 9 9 29 4.4

inline-flex 11† 12 28 9 9 29 4.4

* Uses -ms-flexbox † 8–10 use -ms-inline-flexbox

Direction,
Wrapping,

& Order

flex-direction

flex-wrap

flex-flow

order

flex-direction

Specifies how flex items are laid out in the flex
container by setting…

» the main axis: ↔ !
» the direction of the flow along the main axis

flex-direction

Values:
» row (default) !
» row-reverse !
» column !
» column-reverse !

flex-direction: row

Flex items are stacked in a row !: from left-to-right

(If the default for your locale is direction: rtl, then
it’s the opposite)

flex-direction: row-reverse

Flex items are stacked in a row !: from right-to-left

(If the default for your locale is direction: rtl, then
it’s the opposite)

flex-direction: column

Flex items are stacked !: in a column from top-to-
bottom

flex-direction: column-reverse

Flex items are stacked !: in a column from bottom-to-
top

You can apply display: flex on flex items

Add flex-direction to the mix & you can really have
something

Each card is both a flex item & a flex container

flex-direction: row for the outer container;
flex-direction: column for each card

On a mobile device,
responsive layout
aligns them
vertically & their
height is now sized
to their content

flex-wrap

Specifies if flex container lays out flex items in single or
multiple lines, & the direction new lines are stacked in

Only applies if the flex container is too small to contain
the flex items

flex-wrap

Values:
» nowrap (default)
» wrap
» wrap-reverse

flex-wrap: nowrap

Flex items are displayed in one row

These are not 200px wide because flex
items do not wrap by default

flex-wrap: wrap

Flex items are displayed in multiple rows, from left-to-
right and top-to-bottom

These are 200px wide

flex-wrap: wrap-reverse

Flex items are displayed in multiple rows, from left-to-
right but from bottom-to-top

flex-flow

Shorthand for setting flex-direction & flex-wrap

flex-flow: <flex-direction> <flex-wrap>

Default is row nowrap

order

Specifies order in which flex items appear inside the
flex container

Default is 0, which orders flex items according to order
in HTML

Value: <integer>

flex-direction 11 12 28 9 9 29 4.4

flex-wrap 11* 12 28 9 9 29 4.4

flex-flow 11 12 28 9 9 29 4.4

order 11 12 28 9 9.2 29 4.4

* Very buggy; see chnsa.ws/1ik for more

https://chnsa.ws/1ik

Aligning
Items & Lines

justify-content

align-content

place-content

align-items

align-self

safe

start

end

column-gap

row-gap

gap

Remember that distributed alignment focuses on
distributing space among aligned boxes, e.g., stretch,
space-around, space-between, & space-evenly

Flex items Flex lines*

Main axis justify-content

Cross axis
align-items

align-self
align-content

* Requires flex-wrap: wrap ** Alas, these terms have different relationships in grid layout

This table shows the relationship between box align-
ment keywords in flexbox layout**

justify-self & justify-items do not apply with flex

!PRO TIP

Never use width & height with flexbox layout! Instead of
width & height, size items using these for the cross axis:

» align-items: stretch

» align-content: stretch

» align-self: stretch

And this for the main axis:

» flex-basis

We’re going to cover align-* in this section

Aligning
Flex Items

on the Main Axis

justify-content

Defines how space is distributed between & around flex
items along the main axis of their container

Values for justify-content:

» flex-start (default)
» flex-end
» center
» space-between
» space-around

» space-evenly

» start

» end

justify-content: flex-start

Aligns flex items to the start of the main axis of the flex
container

Default value for justify-content

justify-content: flex-end

Aligns flex items to the end of the main axis of the flex
container

justify-content: center

Aligns flex items at the center of the main axis of the
flex container

justify-content: space-between

Flex items have equal spacing between them, with first
& last flex items aligned to edges of the main axis of the
flex container

No space before first flex item
(or after last flex item), but
equal space between flex items

justify-content: space-around

Flex items have equal spacing around them, with first
& last flex items getting half-sized spaces on the ends of
the main axis of the flex container

Empty space before the first, and after the last, flex
items equals half of the space between two adjacent
items

Space before 1st flex item (&
after last flex item) is 1/2 of
space between flex items

justify-content: space-evenly

Flex items have equal spacing around them, with first
& last flex items getting equal spaces on the ends of the
main axis of the flex container

Empty space before the first, and after the last, flex
items equals the space between two adjacent items

Space before first flex item &
after last flex item equal to
space between flex items

justify-content:* 11 12 29 9 9.2 29 4.4

space-evenly – 79 52 11 11 60 Y

* Includes support for flex-start, flex-end, center, space-between, & space-around

Aligning
Flex Items

on the Cross Axis

align-items

Aligns flex items in the cross axis of the current flex line

Values for align-items:

» stretch (default)
» flex-start
» flex-end
» center
» baseline

» start

» end

align-items: stretch

Flex items fill the whole height (or width) from cross
start to cross end of the flex container

Obviously the flex item cannot have height set

Default value for align-items

align-items: flex-start

Flex items stack from the cross start of the flex
container

align-items: flex-end

Flex items stack from the cross end of the flex container

align-items: center

Flex items stack from the center of the cross axis of the
flex container

Horizontally
and vertically
centered!

" # $ %&

align-items: baseline

Flex items stack so that the baselines are aligned inside
the flex container

align-items 11 12 27 9 9 52 4.4

align-self

Allows the default alignment, or the one specified for
the flex container by align-items, to be overridden for
individual flex items

Values for align-self:

» auto (default)
» flex-start
» flex-end
» center
» baseline
» stretch

» start

» end

align-self: auto

Uses the value of align-items on the flex container

If align-items isn’t set on the flex container,
remember that it defaults to stretch

align-self: flex-start/start

Flex item stacks from the cross start of the flex
container

flex-start is well-supported; the future is start

align-self: flex-end/end

Flex item stacks from the cross end of the flex container

flex-end is well-supported; the future is end

align-self: center

Flex item stacks from the center of the cross axis of the
flex container

align-self: baseline

Flex item stacks so that the baselines are aligned inside
the flex container

align-self: stretch

Flex item fills the whole height (or width) from cross
start to cross end of the flex container

Default value for align-items on the flex container

align-self: 11 12 27 9 9 36 4.4

baseline – 79 45 – – 57 Y

stretch 11 79 52 – – 57 Y

Aligning
Flex Lines

on the Cross Axis

align-content

Aligns multiple lines of flex items within the flex
container when there is extra space in the cross axis

Similar to how justify-content aligns individual
items within the main axis

What about all this extra space?

align-content only effects layout when there are
multiple lines of flex items inside the flex container &
flex-wrap is set to wrap or wrap-reverse

If there is only a single line of flex items, align-
content has no effect on the layout

Values for align-content:

» stretch (default)
» flex-start
» flex-end
» center
» space-between
» space-around

» space-evenly

» start

» end

align-content: stretch

Flex items display with distributed space after every
line of flex items

Default for align-content

align-content: flex-start

Flex items begin at the cross start of the flex container
based on flex-direction

align-content: flex-end

Flex items are stacked at the cross end of the flex
container, but not starting there

align-content: center

Flex items are stacked in the center of the cross axis of
the flex container

align-content: space-between

Rows of flex items have equal spacing between them,
with first & last rows aligned to the top & bottom edges
of the flex container

No space after last row (or before 1st
row), but equal space between rows

align-content: space-around

Rows of flex items have equal spacing between them,
but space before the first row & after the last row equals
half of the space between adjacent rows

Similar to justify-content: space-around, but
focuses on rows instead of flex items

Space after last row (& before 1st row) is
1/2 of space between rows

align-content: space-evenly

Rows of flex items have equal spacing around them,
even the first & last rows

Space after last row (& before 1st row) is
equal to space between rows

✏ SIDE NOTE

place-content

Shorthand for align-content (which aligns lines on
the cross axis, or block direction) & justify-content
(which aligns items on the main axis, or inline
direction)

Values: <align-content> <justify-content>

If only 1 value is provided, it applies to both

✏ SIDE NOTE

Nice quick way to center flex items if & only if flex-
wrap: wrap is enabled:

place-content: center;

align-content: 11 12 28 9 9.2 29 4.4

stretch – 79 52 9 9 57 &

space-evenly – 79 52 11 11 60 Y

place-content – 79 45 9 9.2 59 59

Scooby-Doo

& The Dangers

of Data Loss

Every property previously covered in this section — 
justify-content, align-content, place-content,
align-items, & align-self — also supports 2 values
that work in conjunction with the other values: safe &
unsafe, e.g.:

div {

 display: flex;

 align-items: safe center;

 justify-content: safe center;

}

The viewport is
easily big enough for
our centered image

Now make the viewport smaller than the centered
image

The image is still centered, therefore all 4 edges go
outside the viewport

Let’s see what happens…

Uh oh — the top & left of the image is completely out of reach,
so that we can’t even scroll to it!

But we can scroll to the bottom & right without a problem

Why?

Since we were unable to scroll past the top or left of the
viewport to see the top or left of the image, you
experience what the W3C calls “data loss”

You can still scroll right & down, however, thanks to the
left-to-right direction & top-to-bottom writing mode of
English

Let’s enable safe center for align-items & justify-
content

Now when scrolling is triggered, the image is no longer
centered & is now aligned as though it was:

align-items: start;

justify-content: start;

Now we can see the top & left of the image (before, it was out
of reach)…

& the bottom & right, like we always could

align-items:

safe & unsafe
– 115 63 – – 115 115

justify-content:

safe & unsafe
– 115 63 – – 115 115

Since Safari doesn’t support safe & unsafe for now, make
sure your design handles the problem via other responsive
behaviors such as image resizing & word wrapping

Marathon Man (1976)

Aligning
via Writing Mode

Every property previously covered in this section — 
justify-content, align-content, place-content,
align-items, & align-self — also supports 2 values:
start & end, e.g.:

div {

 display: flex;

 justify-content: start;

}

start

Flex items are aligned at the logical start edge of the
flex container relative to reading direction or writing
mode

end

Flex items are aligned at the logical end edge of the flex
container relative reading direction or writing-mode

Block start

Block end

In
li

n
e

st
a

rt

In
lin

e en
d

Latin- & Han-based

Block start

Block end

In
li

n
e

st
a

rt

In
lin

e en
d

Arabic-based

Inline start

Inline end

B
lo

ck
 s

ta
rt

B
lo

ck
 en

d

Mongolian-based

Inline start

Inline end

B
lo

ck
 e

n
d

B
lo

ck
 sta

rt

Han-based

justify-content:

start & end
– – 45 9 9 – –

align-items:

start & end
– – 45 – – – –

align-self:

start & end
– 79 45 – – 57 Y

align-content:

start & end
– – 45 – – – –

place-content:

start & end
? ? ? ? ? ? ?

Gutters

column-gap

Defines minimum size of space (the gutter) between
items

row-gap

Defines minimum size of gutter between wrapped lines

gap

Defines minimum size of gutter between rows &
columns

Shorthand for setting column-gap & row-gap

column-gap – 84 63 14.1 14.6 84 84

row-gap – 84 63 14.1 14.6 84 84

gap – 84 63 14.1 14.6 84 84

!PRO TIP

Due to lack of support, for now use fixed-length margins — 
e.g., margin-left: 20px; — but understand that this brings
with them limitations & complications

Limitations: since you can’t do a first or last line selector,
you cannot exclude margins from the first or last line if
wrapping occurs

Complications: if wrapping is not going to occur, you need to
use :nth-child, :first-child, or :last-child, as needed

Or just use grid if the design allows

margin: auto

margin: auto

Takes all available space (horizontally & vertically)
within a flex line

Helpful since justify-self property isn’t available in
Flexbox

Sizing
Flex Items

flex-grow

flex-shrink

flex-basis

flex

By default, flex items are sized to their content,
similarly to table cells

!PRO TIP

Never use width & height with flexbox layout! Instead of
width & height, size items using these for the cross axis:

» align-items: stretch

» align-content: stretch

» align-self: stretch

And this for the main axis:

» flex-basis

We’re going to cover flex-basis in this section

flex-grow

Specifies if a flex item can grow if necessary to take
up available space inside its flex container

Value: <number>
» 0: do not grow (default)
» Positive <number>: flex item can grow

Any positive number for flex-grow allows the flex item
to grow to fill all available space

All flex items that have the same number grow the same
amount

If those numbers differ, flex items grow proportionally
based upon those numbers, with larger numbers
growing more

flex-shrink

Specifies if a flex item can shrink if necessary to fit
inside its flex container

Value: <number>
» 1: all flex items can shrink to fit (default)
» 0: do not shrink below the original size
» Positive <number>: flex item can shrink

Any positive number for flex-shrink allows the flex
item to shrink to fit within its flex container

All flex items that have the same number shrink the
same amount

If those numbers differ, flex items shrink propor-
tionally based upon those numbers, with larger
numbers shrinking more

Note that…

» the default for flex-grow is 0: do not grow
» the default for flex-shrink is 1: shrink as necessary

!PRO TIP

We have said not to use width or height — & we mean
that

You will, however, need to use max-width & min-width
on flex items to limit their maximum growth or
shrinking

flex-basis

Defines initial main size of a flex item before changes
caused by flex-grow or flex-shrink are applied

Values:
» auto (default)
» content

» max-content

» min-content
» <width>

What about width/height? Why use flex-basis
instead?

» flex-basis avoids content overflow problems
» flex-basis works along the main axis, so you don’t

need to worry about flex-direction vs width/
height

» flex-basis is designed to work together with flex-
grow & flex-shrink

» flex-basis is part of the flex shorthand, which the
W3C recommends you use

flex-basis: auto

Sizes flex items based on their content

Warning: this assumes you have not used width/
height, which we told you not to do!

If you do have width/height set, auto uses that value
instead (see why we told you not to use it?)

flex-basis: content

Sizes flex items according to content while ignoring
width/height

Only supported in a few browsers!

You won’t need this because you won’t use width/
height, right? Right? Riiiiiiight?

flex-basis: max-content

Sizes flex items to longest the content can be (if it were
not wrapped)

flex-basis: min-content

Sizes flex items to narrowest the content can be, e.g.,
the longest word or image

flex-basis: <length>|<percentage>

Overrides the CSS height or width properties of a flex
item (as if you were to disobey us & use them! Never!)

Can be either a <length> (e.g., px, em, rem, vh) or
<percentage> of the flex container

flex-basis: 0

Do not base initial size on content, so growing &
shrinking occur without content in mind

flex-grow & flex-shrink

flex-basis (not auto)

width or height (No!)

Content (aka flex-basis: auto, the default)

Order of sizing effect for flex items

flex

Instead of flex-grow, flex-shrink, & flex-basis, the
W3C encourages the use of the shorthand flex instead

Why?

» flex-grow, flex-shrink, & flex-basis always work
together when it comes to sizing flex items, & flex
combines them intelligently

» flex sets values that make sense for common uses

flex values:

» <flex-grow> <flex-shrink> <flex-basis>
» initial (default)
» auto

» none
» <number>

» <length>|<percentage>

flex takes 1, 2, or 3 values

1 is a keyword or <number>

2 (e.g., 1 25px), but this is really confusing

3 for <flex-grow> <flex-shrink> <flex-basis>

Of these, we recommend 1 or 3

Single value <flex-grow> <flex-shrink> <flex-basis>

initial 0 1 auto

auto 1 1 auto

none 0 0 auto

<number> <number> 1 0

<length> 1 1 <length>

<percentage> 1 1 <percentage>

flex: initial

Equivalent to 0 1 auto

» Do not grow
» Shrink if not enough space in container
» Size based on content

Default for flex

flex: auto

Equivalent to 1 1 auto

» Grow to absorb free space
» Shrink if not enough space
» Size based on content

} Fully flexible!

flex: none

Equivalent to 0 0 auto

» Do not grow
» Do not shrink
» Size based on content

} Inflexible!

flex: <number>

Equivalent to <number> 1 0

» Grow to absorb free space
» Shrink if not enough space in container
» Base size is not based on content, so growing &

shrinking occur without content in mind

Typically this will results in all flex items having the
same size

flex-grow 11 12 28 9 9.2 29 4.4

flex-shrink 11 12 28 9 9.2 29 4.4

flex-basis 11* 12 28 9 9.2 29 4.4

flex 11 12 28 9 9.2 29 4.4

* See note at chnsa.ws/1ii

flex-basis:

auto 11 12 18 7 7 22 Y

content – 12* 61 – – – –

max-content – – 66 – – – –

min-content – – 66 – – – –

* No longer supported as of 79!

References

Click on a declaration to select it

Select multiple declarations

Now click on .container (or .item)

⌘C/Ctrl+C (click anywhere to reset)

Techniques

Tag Cloud

By using Flexbox, items grow to fill the width of the
container so you can avoid a ragged edge on the right

What if each of the terms is linked?

We set display: contents on the
because we only care about placing the
<a>s

Sticky Footer

Media Objects

We’re
going to
make
this in
class if
we have
time

Cards

We’re going to make this in class if we have time

Thank you!

scott@granneman.com
www.granneman.com
ChainsawOnATireSwing.com
@scottgranneman

jans@websanity.com
websanity.com

CSS Flexbox
Flexible, Robust Line-Based Layout

© 2017 R. Scott Granneman
Last updated 2023-10-23

You are free to use this work, with certain restrictions.
For full licensing information, please see the last slide/page.

R. Scott Granneman r Jans Carton

3.7

Changelog

2023-10-23 3.7: Updated compatibility table for safe &
unsafe

Changelog

2022-10-14 3.6: Added Flexbox cheatsheet to
References; added screenshots for column-gap, row-gap,
& gap

2021-05-07 3.5: Updated W3C spec screenshot; in initial
diagrams of terms, added diagrams assuming flex-
direction: column; created Terms section; updated
Triggering Flexbox Layout section; added example for
flex: 1 1 0; few more details about place-content

tel:2022-10-14%203.6

Changelog

2021-05-07 3.4: Converted theme to Granneman 1.7;
fixed minor formatting issues

2020-07-23 3.3: Added dotted line to screenshot for
justify-content: space-around; updated
screenshots for Sticky Footer; converted to Granneman
1.6; fixed all formatting errors; added slides on using
flexbox with items using <a> in Tag Cloud

Changelog

2020-07-21 3.2: Moved some slides from Examples to
References; changed Examples to Techniques; added new
examples to Techniques

2020-07-13 3.1: Changed subtitle

2020-07-10 3.0: (con’t. from ↓) added new section
Scooby-Doo & The Dangers of Data Loss covering safe;
added new section Aligning via Writing Mode covering
start & end

Changelog

2020-07-10 3.0: Moved Flexbox out of CSS Layout into its
own slide deck; added diagram explaining basic Flexbox
flow; completely re-did all screenshots; re-did almost all
compatibility charts; added new section Direction,
Wrapping, & Order; better examples for using multiple
flex-direction; created new section Aligning Lines &
Items; lots of warnings not to use width & height;
renamed Sources to References; added CSS-Tricks’ “A
Complete Guide to Flexbox”; added 2 assignments to
Examples; (con’t. ↑)

Licensing of this work

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

You are free to:

» Share — copy and redistribute the material in any medium or format
» Adapt — remix, transform, and build upon the material for any purpose, even commercially

Under the following terms:

Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use. Give credit to:

Scott Granneman • www.granneman.com • scott@granneman.com

Share Alike. If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

No additional restrictions. You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

Questions? Email scott@granneman.com

