
CSS Grid Layout
Robust Layout Using Rows r Columns

© 2014 R. Scott Granneman
Last updated 2020-07-17

You are free to use this work, with certain restrictions.
For full licensing information, please see the last slide/page.

R. Scott Granneman r Jans Carton

3.3

Notes & URLs for this presentation can be found…

» underneath the link to this slide show on
granneman.com

» at files.granneman.com/presentations/webdev/CSS-
Layout.txt

http://files.granneman.com/presentations/webdev/CSS-Layout.txt
http://files.granneman.com/presentations/webdev/CSS-Layout.txt
http://files.granneman.com/presentations/webdev/CSS-Layout.txt
http://files.granneman.com/presentations/webdev/CSS-Layout.txt

As of October 2018

As of March 2020

Flexbox
vs Grid

Flexbox is for laying out elements in a particular
direction along a (sometimes wrapped) line

Grid assigns objects within a matrix of columns & rows

❶ ❷ ❸ ❹ ❺ ❻ ❼

❽ ❾ ❿

Flexbox

❶
❹

❷

❸ ❺

Grid

With every other layout method except grid, you can
visualize the layout itself via the HTML

Grid, however, defines all layout in the CSS — the
HTML doesn’t necessarily tell you anything about the
actual rendered layout other than certain grid items
exist inside a grid container

Grid is ultimately about using CSS to define layout
scaffolding & then placing rendered boxes onto that
scaffolding

Dev tools for grid allow you to inspect something
besides the DOM items you’ve seen with other layouts;
instead, with grid you see the layout structures

Concepts
& Terms

Grid container defines the grid structure

Grid is composed of lines, cells, areas, & tracks

Grid items are placed into areas

Grid gutters are thick lines between tracks

Grid container
» creates a grid layout context
» can be bigger (or smaller) than the

grid itself

Grid lines divide the grid, & they are

key to understanding grid layout

This grid has 8 lines

Grid lines are numbered

Space between 4 adjacent grid lines

defines a grid cell

This grid has 9 cells

Grid area is defined by 4 (not
necessarily adjacent) grid lines

Grid area is surrounded by 4 grid
lines around any number of cells

A cell is an area, but not all areas are
cells!

How many areas are in this grid?

Space between 2 adjacent grid lines

defines grid tracks of columns or

rows

A column track

How many total tracks are in this

grid?

A column track

How many total tracks are in this

grid?

6!

Grid items are placed into grid

areas based on grid lines — in this

case, an area equal to 1 cell

Grid items are placed into areas

that can span more than 1 cell

All direct children of grid container

are grid items*

* With a few exceptions

This grid has 9 cells but only 1 item

Cells are not part of the DOM so

you cannot select them with CSS

Grid item between:

» row lines 1 & 2, & column lines

1 & 2

» row lines -3 & -4, & column

lines -3 & -4

» any others?

Grid item between:

» row lines 3 & 4, & column lines

2 & 3

» row lines -1 & -2, & column

lines -2 & -3

» any others?

Grid gutters are basically thick lines
creating space between tracks

Your First
Grid

display: grid

grid-template-columns
grid-template-rows

grid-gap/gap

grid-row-start
grid-row-end
grid-column-start
grid-column-end

Create a grid layout context
with display: grid

Nothing to see because we
triggered the grid layout but
haven’t yet built a grid 1

Build the grid with tracks using
grid-template-columns &
grid-template-rows

Now we see the grid container
because there’s a grid inside it 2

Add space between tracks using
grid-gap

Note the grid is now 340×340 3

Add grid items, which are placed

automatically by default 4

Place grid items using line numbers

5

Inspecting
Grids

Firefox easily has the best grid inspector tools

Right-click on a grid & select Inspect Element

1. Indicates a grid container

2. Click to reveal grid

1

2

Line numbers appear — positive
& negative — as do gutters

Under Layout > Grid, you can
change what appears, including
the colors of the lines

Chromium-based browsers are surprisingly not nearly
as useful

Nothing much here…

Hover over the
grid container

Hover over the
grid item

Safari’s Inspector does nothing special for grid, so it’s
pretty useless

Triggering
Grid Layout

display: grid (<inside>)
display: block grid (<outside> <inside>)

Creates a grid layout context inside the box:

» Grid box aligns vertically (because block)
» Creates the grid container
» Container can be bigger (or smaller) than the grid

itself
» Immediate children become grid items

Note that there are no grid items yet!

Each grid item creates a new layout

context, so each grid item can itself

be a flow, flexbox, or grid container

Track Basics

When you create tracks, you define

» whether they are columns or rows
» how many tracks there are
» the size of the tracks
» optional names for the lines adjacent to the tracks

grid-template-columns

grid-template-rows

grid-template-columns & grid-template-rows are
foundational for creating the grid tracks, which in turn
define the grid

grid-template-columns

Explicitly defines size & number of grid columns, &
line names via a <track list>

Can mix & match any units: px, em, %, fr …

<track list> can be…
» a single size value for 1 column: 200px
» multiple size values for >1 columns: 200px 1fr 300px
» a mix of values & line names: 200px [hpl] 300px

grid-template-rows

Explicitly defines size & number of grid rows via a
<track list>

Same rules as grid-template-columns

We will mention grid-template-columns & grid-
template-rows constantly throughout the rest of this
presentation

grid-
template-
columns-

–* 16 52 10.1 10.3 57 57

grid-
template-

rows-
–* 16 52 10.1 10.3 57 57

* IE uses the older grid-columns & grid-rows, which autoprefixer should take care of for you

Placing Items

5 ways to place grid items

» Automatic
» Numbered lines
» Named lines
» Named areas
» Spans

By default grid items are placed automatically in the
same order as your code, as you’ve seen*

You can position grid items manually, however

* Details & exceptions having to do with grid-auto-flow will be covered later

grid-row-start
grid-row-end

grid-row

grid-column-start
grid-column-end

grid-column

grid-area

Values:

» <integer>: positive or negative
» <custom-ident>: name you choose
» span <integer> && <custom-ident>: tracks to

stretch across

Numbered Lines

grid-row-start
grid-row-end
grid-column-start
grid-column-end

Properties that determine where 1 edge of a grid item is
placed

Values specify start or end line; e.g.,

grid-row-start: 3

grid-row
grid-column

Shorthand properties that combine -start & -end for a
given track direction (row or column)

Values specify start and end lines; e.g.,

grid-row: grid-row-start / grid-row-end

grid-row: 3/5

grid-area

Shorthand property that combines -start & -end for
both track directions

Value specifies 4 start & end lines; e.g.,

grid-area: grid-row-start / grid-column-
start / grid-row-end / grid-column-end

grid-area: 2/2/4/5

grid-row-start – 16 52 10.1 10.3 57 57

grid-row-end – 16 52 10.1 10.3 57 57

grid-column-
start

– 16 52 10.1 10.3 57 57

grid-column-end – 16 52 10.1 10.3 57 57

grid-row – 16 52 10.1 10.3 57 57

grid-column – 16 52 10.1 10.3 57 57

What number is this line?

What number is this line?

2 and -3

Negative Line Numbers

Use negative numbers to count

backwards from the ends

Why negative line numbers?

The number of tracks might change, & you don’t know
the line number for the end

1 always represents the start
-1 always represents the end

4 is fine because we know
the number of tracks

4 no longer works — the
number of tracks changed

-1 fixes it no matter how
many tracks

Named Lines

You can assign names to some or all grid lines, & those
names are mixed with your track sizes

The names, which you create, must go inside []

grid-template-rows: [start] 100px [line-2]
100px [line-3] 100px [end]

You do not have to name every single line, & can
instead name just the key lines in your layout

grid-template-rows: [start] 100px 100px
[line-3] 100px [end]

You can give a line more than 1 name if it serves more
than one purpose

grid-template-rows: [start] 100px 100px
[line-3 foo bar] 100px [end]

You can use the same name on multiple lines

grid-template-rows: [start] 100px 100px
[line-3 foo bar] 100px [end foo]

Once lines have names, you can use the name to place
an item rather than a line number

You can mix named lines & line numbers, but that will
lead to instant insanity

header-start  
sidebar-start

header-end  
body-start

body-end  
sidebar-end

header-start  
body-start

header-end  
body-end  
sidebar-start

sidebar-end

header-start  
sidebar-start

header-end  
body-start

body-end  
sidebar-end

header-start  
body-start

header-end  
body-end  
sidebar-start

sidebar-end

header-start  
sidebar-start

header-end  
body-start

body-end  
sidebar-end

header-start  
body-start

header-end  
body-end  
sidebar-start

sidebar-end

header-start  
sidebar-start

header-end  
body-start

body-end  
sidebar-end

header-start  
body-start

header-end  
body-end  
sidebar-start

sidebar-end

Named Areas

grid-template-areas

grid-area

We know how to layout a grid by positioning grid items
via grid lines

Another method: use grid template areas

grid-template-areas

Defines named areas in the grid

All named areas must be rectangular

1

body is a
rectangle Everything lays out nicely!

Ruh-roh

body is no
longer a
rectangle

grid-area

Places grid item in a named area

1

When you define a named area, the lines around those
areas are automatically assigned implicit line names

You can use these implicit line names when placing
items via named lines

1

header-end  
body-start  
sidebar-start

header-start

body-end  
sidebar-end

header-start  
body-start

body-end  
sidebar-start

header-end  
sidebar-end

.

Represents a null (empty) cell token

grid-template-
areas

– 16 52 10.1 10.3 57 57

grid-area – 16 52 10.1 10.3 57 57

Spans

span <integer>

Define how many lines the grid area should extend

If you don’t supply a <integer>, span defaults to 1 (no
-<integers> or 0

Sizing Tracks

Various ways to size row & column tracks

» <length>
» <flex> fr unit
» max-content
» min-content
» fit-content()
» minmax()
» auto (default)
» <percentage>
» subgrid

<length> data type; e.g.:

» 10px
» 10em
» 10rem
» 10vh

More in CSS Typography & CSS Data Types

fr

Grid introduces a new unit: fr, short for fraction of the
free space in the grid container

fr is calculated after any non-flexible items

grid-template-columns: 200px 1fr 200px;
grid-template-rows: 1fr 2fr 1fr;

1fr 1fr1fr

1fr 2fr 1fr

100
px 1fr1fr

max-content

Largest content in a grid item determines the size of
the track

Similar to white-space: nowrap

No good use cases (prove us wrong!) — it’s the W3C
being completionist again

min-content

Track becomes as small as it can be to accommodate
the width of the longest word, image, video, fixed-size
<div>, & so on

Smallest content in a grid item determines the size of
the track, forcing all text to wrap

Useful for limiting text to the width of an image or
video, for instance

fit-content(<length>|<percentage>)

Largest content in a grid item determines the size of
the track, but not bigger than (<length>|
<percentage>)

Useful!

In this case, the text is less than
250px, so the grid item is as long
as the text

This text is bigger than 250px, so
it’s wrapped

minmax(min, max)

Defines the size of a track as a minimum to maximum
range

The middle grid item is
250px, which is the
maximum size we set

The middle grid
item will not get
smaller than
100px

auto

Width automatically calculated based on content,
similar to table layout algorithm

You abdicate control when you use auto, so you may get
unexpected results

Note that auto track sizes (and only auto track sizes)
can be stretched by align-content: stretch &
justify-content: stretch (more later)!

The rendering engine
determined those widths, which
may not be what you wanted

<percentage>

Using % with grid-template-columns & grid-

template-rows vastly complicates things because you

have to take grid-gap into account

Do not use <percentage> — use fr instead

subgrid

Tells a child grid to re-use the parent grid’s lines for
rows &/or columns

We’ll discuss this later

Track sizing playground

codepen.io/
websanity/pen/oQLoBL

http://codepen.io/websanity/pen/oQLoBL
http://codepen.io/websanity/pen/oQLoBL
http://codepen.io/websanity/pen/oQLoBL
http://codepen.io/websanity/pen/oQLoBL
http://codepen.io/websanity/pen/oQLoBL
http://codepen.io/websanity/pen/oQLoBL

fr 10
-ms-

*16 52 10.1 10.3 57 57

max-content 10
-ms-

16 52 10.1 10.3 57 57

min-content 10
-ms-

16 52 10.1 10.3 57 57

fit-content() 10
-ms-

16 51 10.1 10.3 29 57

minmax() – 12 52 10.1 10.3 57 80

repeat()
Function

repeat(x, y)

CSS function for defining repeated tracks in a grid

Value for grid-template-columns & grid-template-
rows only

repeat(x, y)

x is how many times to

repeat y:

» <positive-integer>
» auto-fill
» auto-fit

y is a <track-list>; for
example:

» 1fr
» min-content 1fr
» 100px 1fr 200px

grid-template-columns: repeat(3, 100px);

3: Number of times to repeat
100px: <track list> to repeat

“Repeat 100px 3 times”

Equivalent to grid-template-columns: 100px 100px
100px;

grid-template-columns: repeat(2, 50px 1fr);

2: Number of times to repeat
50px 1fr: <track list> to repeat

“Repeat 50px 1fr 2 times”

Equivalent to grid-template-columns: 50px 1fr
50px 1fr;

grid-template-columns: repeat(2, 50px 1fr)
100px;

2: Number of times to repeat
50px 1fr: <track list> to repeat

“Repeat 50px 1fr 2 times, then insert 100px”

Equivalent to grid-template-columns: 50px 1fr
50px 1fr 100px;

grid-template-columns: 100px repeat(2, 1fr)
100px;

2: Number of times to repeat
1fr: <track list> to repeat

“Insert 100px, then repeat 1fr 2 times, then insert
100px”

Equivalent to grid-template-columns: 100px 1fr
1fr 100px;

grid-template-columns: repeat(3, minmax(100px,
1fr));

3: Number of times to repeat
minmax(100px, 1fr): <track list> to repeat

“Insert a minimum size of 100px & a max of 1fr, then
repeat 3 times”

Equivalent to grid-template-columns:
minmax(100px, 1fr) minmax(100px, 1fr)
minmax(100px, 1fr);

1fr wide

100px wide

100px wide 😖

auto-fill

Create new tracks to fill the container when there is
enough room

auto-fit

Creates new tracks when there is enough room, but
then resizes tracks that have items so they fit the
container

All columns are 100px

Why are there 3 columns?

All columns are 1fr

Container has 100px of
space, so auto-fill
creates a new track

auto-fit created a new
track also (see the 5?)
but only the 3 tracks
with items are resized

auto-fill
creates 2 extra
tracks

auto-fit created a new
track also (see the 6?)
but only the 3 tracks
with items are resized

auto-fill creates 4 extra tracks

auto-fit
created a new
track also (see
the 8?) but only
the 3 tracks
with items are
resized

Why 8 lines for auto-fit? New tracks
are created, but they don’t have items in
them, so they take up no space & do not
affect the layout

No items, no tracks

auto-fill & auto-fit only create
2 column tracks, but there’s not
enough room with numeric for its
3 column tracks, so it blows out of
the container

Not yet large enough to create 2 ≥ 100px
tracks… & numeric continues to blow
out of the container

Since the grid-gap is 20px, we
need 220–339px to create 2 tracks

repeat() – 16 59* 10.1 10.3 57 80

* repeat(auto-fill, ...) & repeat(auto-fit, ...) still only support 1 repeated column
as of version 72 (March 2020)

Aligning
Within the Grid

Gutters

row-gap
column-gap

gap

December 14, 2017 W3C Candidate Recommendation
for CSS Grid Layout Module Level 1 announced this
change:

“Removed grid-row-gap, grid-column-gap, and grid-
gap properties, replacing with row-gap, column-gap,
and gap which are now defined in CSS Box Alignment.
(Issue 1696)”

https://www.w3.org/TR/css-grid-1/#change-2016-grid-gap
https://www.w3.org/TR/css-grid-1/#change-2016-grid-gap
https://www.w3.org/TR/css-align-3/
https://www.w3.org/TR/css-grid-1/#change-2016-grid-gap
https://www.w3.org/TR/css-grid-1/#change-2016-grid-gap
https://www.w3.org/TR/css-align-3/

All gap properties have to do with setting the minimum
amount of space between rows & columns

row-gap

Defines minimum size of grid gutter between rows

column-gap

Defines minimum size of grid gutter between columns

gap

Defines minimum size of grid gutter between rows &
columns

Shorthand for setting row-gap & column-gap

Values for row-gap, column-gap, & gap

» <length>
» <percentage>: never use this, or you shall sink into a

Stygian madness

All gap properties can accept 1 or 2 values, e.g.:

gap: 1em

Sets value for both row-gap & column-gap

gap: .5em 1em

Sets value for row-gap & then column-gap

No value set for rows, so they
default to 0

gap: 20px sets value for both

row-gap & column-gap

gap: 10px 20px sets value for

row-gap & then column-gap

All gap properties set the size of

the grid’s gutter between tracks

only, not between the container

& the items

💡PRO TIP

All gap properties set the minimum distance between
tracks, however, justify-content & align-content
(covered next) can increase the distance

grid-row-gap – 16 52 10.1 10.3 57 57

row-gap – 16 61 12 12 66 66

grid-column-gap – 16 52 10.1 10.3 57 57

column-gap – 16 61 12 12 66 66

grid-gap – 16 57 10.1 10.3 57 57

gap – 16 66 12 12 66 66

Aligning Grid Tracks

justify-content
align-content

place-content

Grid lines

Block axis

Inline axis

All of the *-content properties in this section align
tracks & gaps in relation to the grid container

Therefore, the container must be larger than the grid
for these to take effect

gap properties set minimum amount of space between
tracks

The *-content properties align tracks within any free
space by specifying how the free space is used

This may result in increasing the gutter size set by gap

justify-content

Sets alignment of grid tracks & gaps along the inline
axis relative to the grid container; i.e., putting space
around columns

This will likely get used more than align-content
(which is for the block axis, & which usually has a fixed
height), because it’s more likely you’ll have viewports
that are wider than the content, giving you free space

Values for justify-content

» normal/stretch: resizes grid items so grid fills full
width of container (default)

» start: aligns grid flush with start edge of container
» end: aligns grid flush with end edge of container
» center: aligns grid in center of container

1

normal
stretch

Resizes tracks so grid fills full width of container

normal is the default, but it is equivalent to stretch in
grid layout

stretch only affects tracks that are sized auto

If a track’s size is not auto, then normal & stretch both
behave like start

Gap

Gap

Gap

Gap

More values for justify-content

» space-between: distributes all free space between
grid columns

» space-around: distributes all free space equally
around each column

» space-evenly: distributes all free space equally
between each column, as well as start & end of
container

2

space-between

Distributes all free space between grid columns, so
there is no free space at the start & end of the container

Gap

space-around

Distributes free space equally around (on either side
of) each column

The amount of space added between each column is
twice that which is added to the start & end of the
container

Gap

space-evenly

Distributes all free space equally between each
column, as well as start & end of container, i.e.:

» start of container & 1st column
» between each column
» between last column & end of container

Gap

✏ SIDE NOTE

Why didn’t you see the Firefox Grid Inspector in the
last series of screenshots?

Because *-content alignment causes very buggy
behavior in Firefox & it doesn’t highlight the grid
properly

align-content

Sets alignment of grid tracks & gaps along the block
axis relative to the grid container

Values & behavior are exactly like justify-content,
but for putting space around rows instead of columns

place-content

Sets alignment of grid tracks & gaps along the block &
inline axes relative to the grid container

Shorthand for align-content & justify-content

place-content can accept 1 or 2 values, e.g.:

place-content: start

Sets value for both align-content & justify-content

place-content: start space-between

Sets value for align-content & then justify-content

align-content – 16 52 10.1 10.3 57 57

justify-content – 16 52 10.1 10.3 57 57

place-content – 79 60 11 11 59 Y

Aligning Grid Items

align-items
justify-items

place-items

align-self
justify-self

place-self

All of the *-items & *-self properties in this section
align grid items in relation to the areas in which they
are placed

Therefore, the area must be larger than the grid item
for these to take effect

Align All Grid Items

justify-items

Aligns all grid items along the inline axis of their areas

Values for justify-items

» normal: acts as either stretch or start (default)
» stretch: stretches grid items to fill their areas but

only if items are sized auto
» start: align grid items flush with inline start edges of

area
» end: align grid items flush with inline end edges of

area
» center: align grid items in inline centers of areas

✏ SIDE NOTE

There are some values — e.g., self-start & self-end 
— that are for edge cases that we aren’t going to cover
here

normal

Default value that acts like stretch, unless the flex item
has intrinsic dimensions, in which case it acts like
start

Isn’t CSS fun?

stretch

Stretches grid items to fill their areas but only if items
are sized auto (which is the default), so stretch is what
you’re going to see most of the time when you first
create a grid

If they are sized any other way, stretch behaves like
start

align-items

Aligns all grid items along the block axis of their areas

Values & behavior are exactly like justify-items, but
for affecting things along the block axis instead of inline

Align Individual Grid Items

align-self

Aligns a grid item along the block axis of its area

justify-self

Aligns a grid item along the inline axis of its area

Values for align-self (block) & justify-self
(inline)

» normal: acts as either stretch or start (default)
» stretch: stretches a grid item to fill its area but only

if item is sized auto
» start: align a grid item flush with start edge of area
» end: align a grid item flush with end edge of area
» center: align a grid item in center of area

place-self

Sets alignment of grid item along the block & inline
axes relative to its area

Shorthand for align-self & justify-self

place-self can accept 1 or 2 values, e.g.:

place-self: center

Sets value for both align-self & justify-self

place-self: start center

Sets value for align-self & then justify-self

align-items – 16 52 10.1 10.3 57 57

justify-items – 16 45 10.1 10.3 57 57

align-self 10* 16 52 10.1 10.3 57 57

justify-self – 16 45 10.1 10.3 57 57

place-self ? ? 45 – – 59 59

*Use -ms-grid-column-align

There are 2 ways tracks are created — either by you or
for you

» Explicit: you explicitly define how many rows &
columns there are in the grid (that’s what we’ve
learned until now)

» Implicit: items that don’t fit within the grid’s
explicitly defined rows & columns will cause the
needed rows & columns to be created for you

Implicit Grid

grid-auto-rows

grid-auto-columns

grid-auto-flow

We explicitly created 6 tracks:
3 columns & 3 rows

We added a grid item that
doesn’t fit, so a new implicit
track is created

grid-auto-flow

Specifies 3 important behaviors of grid items:

» the direction in which automatically placed items fill
the grid: row or column?

» the direction in which implicit tracks are created:
rows or columns?

» how automatically placed items are packed

Values for grid-auto-flow

» row: automatically placed items go in rows, & new
implicit tracks are rows (default)

» column: automatically placed items go in columns, &
new implicit tracks are columns

» dense: items attempt to fill in empty areas earlier in
the grid where previous items wouldn’t fit, which may
very well cause items to appear out of order!

You can combine either row or column with dense

» row dense: fill each row using the dense algorithm
(identical to dense, so you’ll never need to use it)

» column dense: fill each column using the dense
algorithm

Why is 10 so short? Because the
default for sizing is auto

Why is 10 so wide? Because the
default for sizing is auto

Sparse packing is the default: each item is placed in
order, & if the item doesn’t fit in an area, it skips ahead
to the next area it does fit, leaving behind empty areas

Dense packing: each item is placed into the next area in
which it will fit, including previous empty areas,
causing items to appear out of order

Sparse packing by row

dense packing by row

Sparse packing by column

dense packing by column

grid-auto-rows

Specifies the size of an implicitly-created grid row
track or pattern of tracks when grid-auto-flow: row

grid-auto-columns

Specifies the size of an implicitly-created grid column
track or pattern of tracks when grid-auto-flow:
column

Values for grid-auto-rows & grid-auto-columns

» <length>
» <percentage>
» <flex> fr unit
» max-content
» min-content
» minmax()
» auto

repeat() is missing because values auto repeat, as
you will see

Note that you cannot combine grid-auto-rows &
grid-auto-columns because only 1 will have an effect
due to grid-auto-flow

Either rows will be created (if grid-auto-flow: row,
which is the default) or columns (if grid-auto-flow:
column)

Implicit tracks are created when
items can’t fit in the grid

Since there are no items, no
implicit rows are created, &
therefore no grid is created

Implicit rows are created to
accommodate grid items,
using the sizes we set

Note that the rows repeat
automatically, without needing
repeat()

grid-auto-
flow-

– 16 52 10.1 10.3 57 Y

grid-auto-
rows-

1o* 16 70 10.1 10.3 57 Y

grid-auto-
columns-

1o* 16 70 10.1 10.3 57 Y

* Uses -ms-grid-rows & -ms-grid-columns

Subgrid

grid-template-rows: subgrid
grid-template-columns: subgrid

Tells a child grid to re-use the parent grid’s lines for
rows &/or columns

subgrid – – 71 – – – –

Techniques

Grid items can also be flex
containers

Tools

Grid Bugs

Thank you!

scott@granneman.com
www.granneman.com
ChainsawOnATireSwing.com
@scottgranneman

jans@websanity.com
websanity.com

CSS Grid Layout
Robust Layout Using Rows r Columns

© 2014 R. Scott Granneman
Last updated 2020-07-17

You are free to use this work, with certain restrictions.
For full licensing information, please see the last slide/page.

R. Scott Granneman r Jans Carton

3.3

Changelog

2020-07-17 3.3: Updated screenshots for max-content

2020-07-16 3.2: Added details re: grid-template-
columns & grid-template-rows; added span; changed
subtitle; added compatibility tables where missing;
added source links where missing; updated lots more

Changelog

2020-05-02 3.1: Added new section on Inspecting
Grids

2018-10-19 3.0: Moved grid slides out of CSS Layout &
into its own slide deck; updated grid screenshot from
Can I Use; completely re-organized the entire slide deck
& added tons of new content

Licensing of this work

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

You are free to:

» Share — copy and redistribute the material in any medium or format
» Adapt — remix, transform, and build upon the material for any purpose, even commercially

Under the following terms:

Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use. Give credit to:

Scott Granneman • www.granneman.com • scott@granneman.com

Share Alike. If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

No additional restrictions. You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

Questions? Email scott@granneman.com

