
CSS Overview Condensed 
Selectors, Integration, Inheritance, Cascading

R. Scott Granneman r Jans Carton 
 

© 2009 R. Scott Granneman • v3.4 2023-10-10 • Licensed CC BY-SA 4.0 



Slides 

granneman.com/downloads/web-dev/CSS-

Overview-Condensed.pdf 

chnsa.ws/css-condensed-slides

Notes 

granneman.com/downloads/web-dev/CSS-

Overview-Condensed.txt 

chnsa.ws/css-condensed-notes

https://granneman.com/downloads/web-dev/CSS-Overview-Condensed.pdf
https://chnsa.ws/css-condensed-slides
https://granneman.com/downloads/web-dev/CSS-Overview-Condensed.txt
https://chnsa.ws/css-condensed-notes


All of my presentations 

granneman.com/presentations/all-

presentations 

chnsa.ws/all-presentations

https://granneman.com/presentations/all-presentations
https://chnsa.ws/all-presentations






Some developers really do not like CSS



“This was always the central mistake in the design of 
CSS. It was solving a problem people just didn’t really 
have. … CSS was a disaster and has almost certainly 
wasted incredible amounts of time and money that 
could have been better spent if a better solution had 
come along in time.” —stormbrew on Hacker News



Those people are wrong



“Programmers expect CSS to operate 
within the patterns they’ve learned for 
other languages, and when it doesn’t, 
the frustration begins.” —Elaina 
Natario

https://thoughtbot.com/blog/authors/elaina-natario
https://thoughtbot.com/blog/authors/elaina-natario


“Mistaking ‘simple’ for ‘easy’ will only 
lead to heartache. [S]ome programmers 
coming to CSS for the first time heard 
it’s simple, so they assume it’s easy. But 
then when they try to use it, it doesn’t 
work. It must be the fault of the 
language, because they know that they 
are smart, and this is supposed to be 
easy. So they blame the language. They 
say it’s broken. And so they try to ‘fix’ it 
by making it conform to a more 
programmatic way of thinking.”  
—Jeremy Keith



“What developers IMO fail to get is 
that CSS is so different because it’s a 
language to express design and they 
don’t understand the basics of 
design. Almost all programming 
languages are about logic and taught 
at all CS / programming schools. But 
design mostly isn’t and is much more 
complex than people think first…” —
maigret, Hacker News







“CSS is the only language that gets 
blamed when the author is bad.”  
—Alex Riviere

https://notacult.social/@fimion/111548164693889592


History



CSS versions & their release dates

CSS 1 December 1996

CSS 2 May 1998

CSS 2.1 July 2007

CSS 3 June 1999–Now

CSS 4 2012–Now



CSS 1 & 2 each were one big specification document 

CSS 3 & 4 are not each one large single spec 

Instead, they are divided into many separate 
documents called modules



Currently 50+ modules! 

Different modules have different statuses 

For the status of each, see www.w3.org/Style/CSS/
current-work 

http://www.w3.org/Style/CSS/current-work
http://www.w3.org/Style/CSS/current-work


W3C CSS Working Group: Colors & Status Codes





Why CSS?



97.2% of all websites use CSS 

Why?

As of Oct. 2023



Separation of Concerns: A design principle that 
separates a computer program into distinct sections, or 
concerns, each focusing on a specific resource or set of 
information 
 

HTML Structure & meaning

CSS Presentation & layout

JavaScript Behavior & interaction

Note: HTML, CSS, & JavaScript can sometimes overlap their functions!



Not separating concerns (<font> is obsolete!)



Separate content (HTML) from presentation (CSS) 
from behavior (JavaScript) 

This makes each one easier to understand if they are 
kept separate instead of putting everything in one large, 
confusing HTML (or JavaScript) file



Site-wide consistency: control how all content looks 
using only 1 (or a few) CSS file(s)



Apply different styles to same content in different 
media: 

» desktop web browser 
» mobile web browser 
» auditory 
» print 
» & more!



Adherence to standards



🎉 🎊 🥳 👯🕺 

It’s fun!



🎉 🎊 🥳 👯🕺 

It’s fun!



Integrating 
CSS



4 ways to connect your HTML with your CSS 

1. Linking to external styles ★ 

2. Embedded styles 
3. Inline styles 
4. @import



Linking



Linked styles use the <link> tag to connect the HTML 
to a CSS file



HTML 4.01      Obsolete, so do not use! 

<head>  
  <link rel="stylesheet" type="text/css"  
  href="/css/main.css">  
</head>

HTML 5 

<head>  
  <link rel="stylesheet" href="/css/main.css">  
</head>



1Start with a basic project



2Create a css folder



3Create /css/main.css



4Link to /css/main.css



What should you name your CSS file? 

It doesn’t matter 

main.css

typography.css

client.css

search.css

navigation.css

 What we, & many others, use



Where should you place your CSS file? 

In your website’s root directory, always create these 
directories: 

css (or styles) 
images (or media) 
js (or scripts) 

fonts (maybe)



A CSS file is made up of style rules & comments 

/* Comment */

blockquote, p, td {  
  font-family: Verdana, sans-serif;  
  font-size: 1em;  
}

#footer {  
  font-size: .9em;  
}

.emphasis {  
  font-weight: bold;  
}

Style rule 1

Style rule 2

Style rule 3



You can link to more than one style sheet, but you 
should try to keep those links to a minimum 

Every link is another server connection & another 
download, which slows down page load time



If you have more than one webpage, you really ought to 
use an external style sheet 

You can now change the appearance & layout of an 
entire site by changing only one document!



✏ SIDE NOTE

You might see advice telling you to add this as the 1st 
line of your style sheet so the browser knows that 
main.css is encoded as UTF-8: 

@charset "utf-8";

This is no longer correct & can be ignored



Embedded



Embedded styles insert CSS inside <style> … </style>  

Most often in the <head>, but can be found anywhere in 
the <body>





Embedded styles are great for one page … 

… but they rapidly become difficult to manage on 
multiple pages



Avoid using embedded styles except in very specific 
circumstances



Inline



Inline styles use the style global attribute 

Do not do this!





Again, do not do this! 

Quick & easy to create, but 
difficult & time-consuming 
to manage 

Must repeat over and over 

Can’t change the style for 
different media, e.g., print 
& responsive



@import



@import allows you to include external stylesheets in 
your CSS; in other words, it allows you to link to 
another CSS file from within a CSS file (yes, this is a 
little weird) 

@import must always come 1st, ahead of any other CSS



import.css is the style sheet that will be imported



import.css included via @import



Put @import 1st so it can be overridden



Don’t use @import unless you absolutely need to 

» Slows down your page loads (the browser downloads 
your CSS, then downloads the imported CSS) 

» Adds complexity



The Browser 
Processing 

Pipeline



HTML CSS JavaScript Browser

Document 
tree

Style 
rules

Programmatic 
changes

Parse 
& paint

The browser processing pipeline (simplified)

Events



Render Tree

HTML

CSS

JavaScript

DOM

CSSOM

Layout Paint

The browser processing pipeline (more detailed)



To understand CSS, you have to understand 

» the DOM (Document Object Model) 
» the CSSOM (CSS Object Model) 
» the browser processing pipeline



The DOM



The DOM is a conceptual model 

“A conceptual model is a representation of a system, 
made of the composition of concepts which are used to 
help people know, understand, or simulate a subject 
the model represents.” —Wikipedia 

We often illustrate conceptual models of both tangible 
& intangible things so we can better understand them





Atomic nucleus 
composed of 
neutrons (blue) 
& protons (red)



Carbon atom, 
with electron 
cloud around 
nucleus



Different models for a 
water molecule (an 
electrically neutral 
group of 2 or more 
atoms held together 
by chemical bonds)



Animal cell, 
made up of 
molecules, 
which contain 
millions or even 
trillions of 
atoms



Maslow’s 
Hierarchy of 
Needs



Render Tree

CSS

JavaScript

CSSOM

Layout Paint

HTML DOM



Before a webpage appears in a viewport, the rendering 
engine downloads the HTML & parses it to figure out 
how to display the webpage on screen 

During this process, the rendering engine creates the 
DOM tree



“A Web page is a document. This document can be 
either displayed in the browser window or as the 
HTML source. But it is the same document in both 
cases.  

The Document Object Model (DOM) represents that 
same document so [the document structure, style, and 
content] can be manipulated. The DOM is an object-
oriented representation of the web page, which can be 
modified with … JavaScript.” —MDN web docs



So what’s the DOM? 

A JavaScript developer will say, “It’s a JavaScript 
interface so that I can manipulate the page” 

A CSS developer will say, “It’s a set of boxes to style” 

An HTML developer will say, “It’s hierarchy & meaning”  

They are all correct!



When is the DOM different than your HTML?



If you have mistakes in your HTML, the rendering 
engine “fixes” them when it generates the DOM



(Excellent horror flick!)



Source code for that webpage



DOM for that same page, as rendered by browser Inspector



Source code

No <tbody>



Rendered DOM

<tbody> added



<table>

  <tbody>

    <tr> 

      <td>Foo</td>

      <td>Bar</td> 

    </tr> 

    <tr>

      <td>Baz</td>        

      <td>Qux</td> 

    </tr>

  </tbody>

</table>

Rendered DOM

<table>

  <tr> 

    <td>Foo</td>

    <td>Bar</td> 

  </tr> 

  <tr>

    <td>Baz</td>        

    <td>Qux</td> 

  </tr>

</table>

Source code



<html>

  <head>

    <meta charset="UTF-8">

    <title>Herbert West Landscaping</title>

 </head>

  <body>

    <img src="logo.webp">

    <h1>We’ll fix your lawn… <i>for good</i>!</

h1>

    <p>We apply it all: fertilizers, mulch, & 

blood</p>

  </body>

</html> DOM tree as HTML elements, each one a 
node, with <html> as the document root



<html>

  <head>

    <meta charset="UTF-8">

    <title>Herbert West 

Landscaping</title>

 </head>

  <body>

    <img src="logo.webp">

    <h1>We’ll fix your 

lawn… <i>for good</i>!</h1>

    <p>We apply it all: 

fertilizers, mulch, & 

blood</p>

  </body>

</html>

- Document

  - html

    - head

      - meta

      - title

        - "Herbert West 

Landscaping"

    - body

      - img

      - h1

        - "We’ll fix…"

          - i

            - "for good"

      - p

        - "We apply…"

DOM treeHTML



DOM tree 
as org chart

Each box you see 
here is a DOM node



DOM tree as nested boxes, each one a node



Firefox up to version 47 had a cool feature called 3D 
View that let you “rotate and re-orient the 3D 
presentation of the DOM hierarchy of your page to see 
it from different angles”



Each box you see is a DOM node









The CSSOM



Render Tree

HTML

CSS

JavaScript

DOM

CSSOM

Layout Paint



The CSSOM is built by the rendering engine using 
specified stylesheet rules from: 

» built-in rules that come with the browser 

» rules added by user 끻뤤끻뤤 

» rules created by CSS authors (developers) 🤓 

APIs allow developers to manipulate the CSSOM 
using JavaScript



Bringing It All Together



Render Tree

HTML

CSS

JavaScript

DOM

CSSOM

Layout Paint

JavaScript can change the DOM & the CSSOM



As of February 2023, there are 140 Web APIs (107 in 
2022; 69 in 2020) 

» 95 available 
» 43 experimental 
» 3 non-standard 
» 1 deprecated

1 non-standard is experimental & 1 is deprecated



95 Web APIs: Background Synchronization • Background Tasks • Badging • Battery Status • 
Beacon • Broadcast Channel • CSS Custom Highlight • CSS Font Loading • CSS Properties 
and Values • CSS Typed Object Model • CSSOM • Canvas • Channel Messaging • Clipboard • 
Compression Streams • Console • Cookie Store • Credential Management • Document Object 
Model (DOM) • Device Memory • Device orientation events • Encoding • Encrypted Media 
Extensions • Fetch • File • File System • File and Directory Entries • Fullscreen • Gamepad • 
Geolocation • Geometry interfaces • The HTML DOM • HTML Drag and Drop • History • 
Houdinis • MediaStream Image Capture • IndexedDB • Insertable Streams for 
MediaStreamTrack • Intersection Observer • Media Capabilities • Media Capture and 
Streams • Media Session • MediaStream Recording • Network Information • Page Visibility • 
Payment Request • Performances • Permissions • Picture-in-Picture • Pointer events • 
Pointer Lock • Popover • Prioritized Task Scheduling • Push • Remote Playback • Resize 
Observer • SVG • Screen Capture • Screen Orientation • Screen Wake Lock • Selection • 
Sensors • Server-sent events • Service Worker • Storage • Storage Access • Streams • Touch 
events • Trusted Types • UI Events • URL • URL Fragment Text Directives • Vibration • View 
Transition • Visual Viewport • Web Animations • Web Audio • Web Authentication • Web 
Components • Web Crypto • Web Locks • Web MIDI • Notifications • Web Share • Web 
Speech • Web Storage • Web Workers • WebCodecs • WebGL • WebOTP • WebRTC • 
WebSockets • WebTransport • WebVTT • XMLHttpRequest



Render Tree

HTML

CSS

JavaScript

DOM

CSSOM

Layout Paint

The rendering engine matches HTML element objects 
with CSS rule objects to generate the Render Tree



Render Tree

HTML

CSS

JavaScript

DOM

CSSOM

Layout Paint

The rendering engine uses the Render Tree to lay out 
boxes in the viewport



Render Tree

HTML

CSS

JavaScript

DOM

CSSOM

Layout Paint

The rendering engine displays (paints) all the content 
of the page in the viewport, from back to front



Render Tree

HTML

CSS

JavaScript

DOM

CSSOM

Layout Paint

Events

JavaScript events can further change the DOM & the CSSOM



The combination of the DOM, CSSOM, & JavaScript 
means that webpages are dynamic in that JavaScript 
can: 

» add, change, & remove any DOM elements & 
attributes 

» change any CSSOM styles 
» react to all existing events 
» create new events



So, when you’re working with CSS, you are styling 
boxes that were rendered from DOM objects



Basic Selectors



A CSS selector declares which DOM objects should 
have particular styles applied to them 

The browser’s rendering engine… 
» parses the HTML & CSS 
» matches selectors to the appropriate DOM objects 
» applies the CSS style to the rendered DOM objects



HTML CSS

<h1 align="center"> h1 {text-align: center;}

Entire thing is a tag Entire thing is a style rule

h1 is an tag name h1 is a selector

align is an attribute text-align is a property

center is a value center is a value

align="center" is an 
attribute-value pair

text-align: center is a 
declaration

Everything inside { & } is a 
declaration block



/* Everything below is a style rule */

footer {                      /* Start declaration block */ 
  padding: 1rem;                                 /* Declaration */ 
  border-top: 1px solid black;  /* Declaration */ 
}                                         /* End declaration block */

footer is a selector 

padding & border-top are properties 

1rem & 1px solid black are values



CSS 1: 10 different selectors (including selectors, 
combinators, pseudo-classes, & pseudo-elements) 

CSS 2: 13 

CSS 3: 22 

CSS 4: 53 (as of Nov. 2022) 

98 in total



1. Simple selectors 

» Type 
» Class 
» ID 
» Universal 
» Pseudo-classes 
» Pseudo-elements 
» Attribute 

2. Compound selectors

3. Complex selectors with 
combinators 

» Descendant 
» Child 
» Adjacent sibling 
» General sibling 

4. Selector list



Simple Selectors



A simple selector describes a single condition on an 
element 

If the condition is true, the element is selected 

element: Is this the specific type of element? 
.class: Does this element have this class on it? 
#ID: Does this element have this ID on it? 
* (universal): Is this an element?



Type



element

Selects every matching HTML element (e.g., <p>, <ul>, 
or <h3>) 

AKA Element Selectors 

Used when you want to affect every instance of an 
element (you can then override selected elements with 
other CSS, e.g., .class)





Class



.class

Selects any element to which the class has been applied, 
as many times per page as needed 

HTML: 
<p class="intro">…</p> 

CSS: 
.intro {

  font-weight: bold;

}



Dot in front of the class name 
in CSS, but no dot in HTML 

Dot labels the class in CSS 

The class attribute labels the 
element in HTML



The paragraph with class 
applied to it is different from 
the paragraph that does not 
have that class



A class can be applied as many 
times per page as you wish



You can use multiple (2, 3, 4, whatever) classes on an 
element when needed





Some frameworks, like Tailwind, encourage the use of 
many classes on elements 

<div class="p-5 mb-4 bg-light rounded-bottom 

text-light hero maintenance"> 

<footer class="container-fluid bg-light 

border-top border-2 border-success mt-auto 

py-3 px-3">

This is a bit controversial among developers



✏ SIDE NOTE

A student once did this: 

<figcaption class="center" class="image-

caption">

This will not work! No duplicate attributes! 

You must use: 

<figcaption class="center image-caption">

🤨



There is no default list of class names 

You come up with the class names your project uses (or 
you use those provided by a framework like Bootstrap) 

The one hard rule for class names: no spaces!



Multiple words in a class name? 

.main-content-nav

.main_content_nav

.maincontentnav

.mainContentNav

.MainContentNav

Just be consistent!

 What most developers use



✏ SIDE NOTE

.main-content-nav  kebab-case  

.main_content_nav  snake_case 🐍 

.MAIN_CONTENT_NAV  SCREAMING_SNAKE_CASE 

🐍 

.maincontentnav  flatcase or lazycase 😴 

.mainContentNav  lowerCamelCase 🐫 

.MainContentNav  UpperCamelCase 🐫/PascalCase



In fact, you can use emoji for class names (but don’t) 

.📰 {

  background-color: hsl(0,0%,76%);

}

.🤮 {

  font-family: "Comic Sans", cursive;

}

<p class="🤮">I have no taste in design!</p>



The big rule for class names: describe function, not 
appearance 

Not “what does it look like?” but instead “what is it 
for?”



Bad class names 

.author name  

.big-red  

.small

Good class names 

.author-name  

.caption  

.alert  

.footnote  

.center

.center is unique, as it is 
both a function and 
appearance



ID



#id

Selects any element to which the ID has been applied, 
but each ID can only be used once per page 

You can use multiple IDs on a page, but each ID must 
be unique



#id & .class share a lot of similarities 

» Names are made up by developers, not specs 
» Names can’t have spaces 
» Names should denote purpose, not appearance 
» Names containing multiple words should be 

combined with a - (or something else consistently)





A specific ID can be applied 
one time per page
A specific ID can be applied 
only one time per page



Class ID

CSS .foo #bar

HTML class="foo" id="bar"

Unique on page No 
class="foo" 1–∞

Yes 
id="bar" once

Values per element Multiple 
class="foo bar"

One 
id="baz"

Specificity 10× 100×

URL addressable No Yes



Bad ID names 

#top nav  
#tiny-little-fonts

Good ID names 

#sidebar (use <aside>) 
#utility-nav (use <nav>) 
#site-footer (use  
    <footer>) 
#logo 
#legalese (use <small>)



We’ve stopped using IDs for CSS over the last 10+ 
years 

Use classes instead of IDs for selectors 

» Classes can be reused, while IDs cannot 
» IDs make the cascade (more about that soon!) very 

complicated 

Many (most?) frameworks (like Bootstrap) stick to 
classes entirely



However, even if we don’t use IDs for CSS selectors 
like we used to, they are still necessary 

» Page fragment identifiers 
» Unique hooks for JavaScript



Page Fragment Identifiers



Start with an element that has an id on it: 
<h3 id="the-call-of-cthulhu"> 

Create a link pointing to that fragment identifier: 
<a href="#the-call-of-cthulhu"> 

Clicking on that link will jump the page down to the 
<h3>







Nothing in CSS re: #dagon!



Say I have this HTML on http://hpl.com/
tales.html: 

<h2 id="cthulhu">The Call of Cthulhu</h2>



If I want to link to <h2 id="cthulhu"> from 
somewhere on http://hpl.com/tales.html, I simply 
use this: 

<a href="#cthulhu"> 

This means “look on the current page for an element 
with an id of cthulhu & go to it”



What if I am on http://hpl.com/bio.html & I want to 
link to <h2 id="cthulhu">, which is on http://
hpl.com/tales.html? 

<a href="/tales.html#cthulhu"> 

This means “look in the root of this same website for a 
page named tales.html, then look for an element with 
an id of cthulhu on that page, & go to it”



What if I am at https://weirdtales.com/
lovecraft.html (a completely different website) & I 
want to link to <h2 id="cthulhu"> on http://
hpl.com/tales.html? 

<a href="http://hpl.com/tales.html#cthulhu"> 

This means “go find a website at the domain hpl.com, 
then look in the root of this website for a page named 
tales.html, then look for an element with an id of 
cthulhu on that page, & go to it”



JavaScript Hooks



This parameter…

…helps the JavaScript…

…target this ID





Universal



* 

Selects every HTML element 

(Though later CSS rules can override these 
declarations)



Once upon a time, Web 
browsers didn’t always 
agree on how much 
margin & padding to use…



Use * to zero out everything so 
you can specify margin & 
padding for every element



Now the developer has to re-
set the margin & padding for 
everything, so all browsers are 
the same



Let’s start by putting padding 
back on <body> so everything 
isn’t crammed to the edge



* + * matches any element 
that has another sibling 
element before it



<h3> doesn’t have a 
previous sibling, so no 
margin below it



<p> has <h3> as a previous 
sibling, so there’s a margin 
below it



Likewise for the next <p>, 
the <hr>, the next <p>, & 
the <ul>



The 1st <li> doesn’t have 
a previous sibling inside 
<ul>, so no margin under 
it …



…but the 2nd & 3rd <li>s 
do have a previous sibling 
inside <ul>, so there’s a 
margin under each …



… which looks terrible! 

How do we fix this?



If any <li> has a 
previous sibling, do not 
put a margin under it



The 1st <li> lacks a 
previous sibling, so our 
original zero out — the * in 
the first rule set — applies



The 2nd & 3rd <li>s 
have a previous sibling, 

so no margin! 😎



It’s rare to use * by itself as a selector, because you 
rarely want to change every element 

Instead, * is more useful when it is scoped, or limited to 
just a certain part of the code 

An example is coming up in Child Combinator



Other simple selectors 

» Attribute selector 
» Pseudo-class 
» Pseudo-element 

Those are covered in CSS Selectors



1. Simple selectors 

» Type 
» Class 
» ID 
» Universal 
» Pseudo-classes 
» Pseudo-elements 
» Attribute 

2. Compound selectors

3. Complex selectors with 
combinators 

» Descendant 
» Child 
» Adjacent sibling 
» General sibling 

4. Selector list



Compound Selectors



A compound selector describes multiple conditions on 
an element 

If all conditions are true, the element is selected 

Consists of a chain of simple selectors connected 
together with a ., but not connected by a combinator 
(which is coming up next)



p.alert matches 
<p class="alert"> 

table.inventory matches 
<table class="inventory">



A compound selector is used to match an element that 
has two classes on it



<p class="center note">

.center {

  text-align: center;

} 

.note {

  font-size: .9em;

} 

.center.note {

  font-style: italic;

}

Selects elements with the  
.center class

Selects elements with the  
.note class

Selects elements with the  
.center and .note classes





1. Simple selectors 

» Type 
» Class 
» ID 
» Universal 
» Pseudo-classes 
» Pseudo-elements 
» Attribute 

2. Compound selectors

3. Complex selectors with 
combinators 

» Descendant 
» Child 
» Adjacent sibling 
» General sibling 

4. Selector list



Complex Selectors 
Using Combinators



A complex selector uses combinator(s) to combine 
multiple selectors together into 1 selector 

.ws-gallery img { … }

ul > li { … }

h2 + p.lead { … }

 ␣ (space)

 >

 +



A combinator expresses a relationship between 
selectors

Combinator Name Ex. Which B is selected?

␣ (space) Descendant A B Any descendant of A

> Child A > B Direct children of A

+ Next Sibling A + B Next sibling after A

~ (tilde) Subsequent 
Siblings

A ~ B All siblings after A



Selector Subjects



Rendering engines match selectors from right to left 

The right-most part of the selector represents the 
subject of the selector, the actual element being selected 

Really helpful when understanding complex selectors



ul li

ul > li

ul > li a[title="home"]

.callOut > p:last-child

.ws-header .nav > li > .current

p code, pre code, blockquote code

Green indicates selected element(s)



Descendant Combinator



selectorA selectorB

Selects all selectorB who have selectorA as an 
ancestor 

selectorB can be a child, grandchild, or later 
descendant of selectorA 

Any selectorB who is not a descendant of selectorA is 
unaffected



<footer> with 
3 <section>s



<footer> with 
3 <section>s

❶ ❷ ❸



<a> inside <p> inside <address> 
inside <section> inside <div> inside 
<div> inside <footer>



<a> inside <li> inside <ul> inside 
<section> inside <div> inside <div> 
inside <footer>



When I hover over an <a> in the 
<footer>, I want an underline to 
appear 

Some <a>s are in <p>s & some <a>s 
are in <li>s — how do I target both 
using the least CSS?



The answer: use a complex 
selector with a descendant 
combinator (the ␣) 

I don’t know where exactly the 
<a>s will be, but I know they will 
be descendants somewhere in 
<footer>, & that’s what the 
selector targets



Child Combinator



selectorA > selectorB

Selects any selectorB who is a direct child of selectorA, 
not a grandchild or any other descendants 

All siblings who are direct children of selectorA are 
selected 

Siblings: 2 or more elements that share a parent 

Contrasts with the descendant combinator, which selects 
both direct children & any descendants, no matter how deep



The table header cells (<th>) are in a single 
table row (<tr>) that is inside <thead> 

The table data cells (<td>) are in 3 separate 
<tr>s, all of which are inside <tbody>



<thead> has been collapsed 
so you can see all of <tbody>



As you hover your mouse over any cell 
in that <tr>, the row turns pink — why?pink



Why doesn’t that <tr> turn pink 
when you hover your mouse over it?

pink



You can often use a child (or descendant) combinator 
instead of a class



<aside>

  <img class="headshot" src="…">

</aside> 

.headshot {} 

<aside>

  <img src="…">

</aside> 

aside > img {}

👎

👍

No need for a class, 
so cleaner HTML



Instead of using a class on every element… 

1. place a single class on the containing element & then 
2. use combinators to select child or descendant type 

selectors



Too many unnecessary 
classes!

👎



The 2nd group in both 
HTML & CSS leverages 
the HTML structure to 
make the HTML simpler, 
while moving any 
complexity to the CSS

👍



A complex selector allows you to scope the universal 
selector in useful ways



Let’s make it look nice…





I don’t like that extra space



We scope the * so it has limited effect



I use * because I don’t know what the first 
child of blockquote might always be



I use * because I don’t know what the last 
child of blockquote might always be



C’est parfait!



An illustration showing the difference between the 
descendant & child combinators



Using > limits the scope of the styles 😀



Using ␣ is not what I wanted! 😡



1. Simple selectors 

» Type 
» Class 
» ID 
» Universal 
» Pseudo-classes 
» Pseudo-elements 
» Attribute 

2. Compound selectors

3. Complex selectors with 
combinators 

» Descendant 
» Child 
» Adjacent sibling 
» General sibling 

4. Selector list



Selector List



selectorA, selectorB, selectorC

List selectors that have similar declarations for 
simpler & cleaner CSS & HTML



Don’t do this: 

p {  
  font-family: serif;  
  font-size: 1em;  
}

blockquote {  
  font-family: serif;  
  font-size: 1em;  
}

Do this: 

blockquote, p {  
  font-family: serif;  
  font-size: 1em;  
}



Any selector can be included in a list 

.emphasis, .title {font-style: italic;}

blockquote, .title {font-style: italic;}

nav .menu-btn, nav .menu-item {display: none;}



A very common selector list because you want all your 
headings to use the same font 

h1, h2, h3, h4, h5, h6 {

  font-family: "Georgia Pro", Georgia, serif;

}



Group similar selectors, but be specific where needed 

CSS is cumulative unless overridden 

blockquote, p {

  font-family: Verdana, sans-serif;

}

p {

  line-height: 1.5;

} <p> will use Verdana and 
have a line-height of 1.5



Turn this… 

h1 {

  font-weight: normal;

  font-size: 2.5em;

  font-family: serif;

}

  

h2 {

  font-weight: normal;

  border-bottom: 1px 

dotted black;

  font-family: serif;

  font-size: 1.8em;

}

…into this: 

h1, h2 {

  font-weight: normal;

  font-family: serif;

}

h1 {

  font-size: 2.5em;

}

  

h2 {

  border-bottom: 1px dotted 

black;

  font-size: 1.8em;

}



Good practice 

blockquote,

option,

p,

td,

.info,

.legalese {  
  font-family: Verdana, sans-serif;  
  font-size: 1em;  
}

Each selector on its own line 

Elements then classes (no IDs!) 

Alphabetical order within 
each grouping of selectors



Formatting



Don’t do this: 

h1 {color: dimgray;}

h1 {font-size: 1.4em;}

h1 {font-weight: bold;}

h1 {font-family: Verdana, sans-serif;}



Instead, combine related declarations 

h1 {

  color: dimgray;

  font-family: Verdana, sans-serif;

  font-size: 1.4em;

  font-weight: bold;

}



Formatting CSS style rules 

selector {  
  property: value;  
  property: value;  
  property: value;  
  …  
}

The order of declarations in the declaration block 
doesn’t matter



Do not forget to put ; at the end of every declaration

You do not actually have to put ; at the end of the last line in a style rule, but that is a very bad 

habit to get into



Use comments in CSS for the same reasons as in 
HTML 

» Notes to yourself & others 
» Debugging: comment out troublesome CSS for testing 

(use your browser’s Inspector) 

HTML comments 
<!-- The Doom That Came to Sarnath -->

CSS comments 
/* The Statement of Randolph Carter */

https://en.wikipedia.org/wiki/The_Doom_That_Came_to_Sarnath
https://en.wikipedia.org/wiki/The_Statement_of_Randolph_Carter


✏ SIDE NOTE

Design Pattern 

“a formal way of documenting a solution to a design 
problem in a particular field of expertise.” —Wikipedia 

“Each pattern describes a problem that occurs over and 
over again in our environment, and then describes the 
core of the solution to that problem” —Christopher 
Alexander, architect & author of A Pattern Language 
(1977)



✏ SIDE NOTE

Bootstrap 5’s structure & classes for the common design 
pattern of a main navigation bar



✏ SIDE NOTE

Bootstrap 4’s structure & classes for the common design 
pattern of cards



💡PRO TIP

Here’s the order I sometimes shoot for in my stylesheets 

@font-face

html

body

/* General */

<type selectors, AZ>

<class selectors, AZ>

/* <New Section> */

<type>

<class>

…



<span> 
& 

<div>



HTML elements “work” without attributes & values, 
e.g., <p> or <h2> 

(…with a tiny few exceptions, like <img src="…"> &  
<a href="/services/">)



<span> & <div> are HTML elements that exist solely to 
work with CSS* 

<span> & <div> by themselves do nothing on a 
webpage (except draw invisible boxes) 

They must use CSS (class="foo") to do anything 
productive

* & JavaScript



Block boxes Inline boxes



<span>



<span> … </span> 

Creates an inline box around a span of text so it can be 
styled with CSS or manipulated with JavaScript  

Does nothing visually on its own!



Normally you use <span> with a class attribute that is then 
referenced in your CSS 

<p>

  The cultists all scream <span class="hpl">Ph’nglui 

mglw’nafh Cthulhu R’lyeh wgah’nagl fhtagn!</span>

<p>

In your CSS you would then refer to .hpl & style it: 

.hpl {

  font-size: 18px;

  font-family: Creepster;

}



<span> should be used only if nothing semantic is 
appropriate 

If you can use <b class="hpl"> because the text is first 
bold, or <i class="hpl"> because the text is first italic, 
then do so 

And so on





<div>



<div> … </div> 

Generic container for adding a division (a block box or 
new object on the document tree) that can be 
manipulated with CSS & JavaScript 

Does nothing visually on its own!



<div> is a grouping element that creates a block box by 
default & does nothing else without CSS 

Use <div> to hold attribute-value pairs relevant to CSS 

As a grouping element, it groups other elements, e.g., 
put a <div> around 3 <p>s & a <ul> 

Use it when other elements (e.g., <article>, <header>, 
or <aside>) are not semantically appropriate



I want the table of contents to stand 
out with a background color, 
borders, & rounded corners



Well that looks stupid…





Much better—& that is why we have 
<div>



Actually, to be semantic, I should 
really use an <ol>



This is a useless <div> 

<div class="lead-copy">

  <p>

When a traveller in north central Massachusetts takes 
the wrong fork at the junction of the Aylesbury pike just 
beyond Dean’s Corners he comes upon a lonely and 
curious country. 

  </p>

</div>

Only use <div> around 2 or more elements that create block 
boxes*

* It’s OK to wrap a <div> around 1 element in a few cases



One reason to use a <div> around a 
single element



Inheritance



Why is Seamus red? 

Why is Seamus using the 
Georgia font? 

Why is Seamus 24px?



Some properties, like font-size & color, are inherited: 
elements with those properties pass those properties 
down through the DOM to their descendant elements 
(unless overridden) 

Other properties, like background-image & border, are 
not inherited: elements with those properties do not pass 
those properties down to their descendent elements 

Inheritance is for elements that do not have properties 
set



Notice what is inherited in 
CSS & what is not 

It would be pretty ugly if 
border or padding was 
inherited!



border-

 collapse

border-spacing

caption-side

color

cursor

direction

empty-cells

font-family

font-size

font-weight

font-style

font-variant

font

letter-spacing

list-style-

 type

list-style-

 position

list-style-

 image

list-style

line-height

orphans

quotes

text-align

text-edge

text-indent

text-transform

visibility

white-space

widows

word-spacing

Partial list of inherited properties



Cascading 
Style Sheets



How does the rendering engine know which style to 
apply to an element?



If an element does not have properties set: inheritance 
(if the property is inheritable) 

If an element matches a selector: use that selector’s 
styles 

If an element’s CSS rules conflict (e.g., CSS tells the 
rendering engine to make all <p>s black and blue): ?



Raising Arizona, 1987





If an element’s CSS declaration conflicts with another 
declaration, the rendering engine uses the Cascade to 
find a winner 

In other words, conflicting declarations follow a 
cascade, & the rule with the most weight wins





Origin 
(+ !important)



CSS can originate from 3 places: 

» Browser, aka the user agent  

» User, the person utilizing the user agent 끻뤤끻뤤 

» Author, i.e., a developer 🤓



All Web browsers have built-in CSS rules 

In Firefox, for example, why does <p> have a certain 
amount of space before & after it? 

Because of Firefox’s built-in default CSS



Firefox

Firefox’s built-in CSS



Equivalent to margin-top: 1em 
& margin-bottom: 1em



WebKit (Safari)

Safari’s built-in CSS



Equivalent to margin-top: 1em 
& margin-bottom: 1em



WHATWG’s standard



“The CSS rules given in these subsections are, except 
where otherwise specified, expected to be used as part 
of the user-agent level style sheet defaults for all 
documents that contain HTML elements.”

WHATWG’s standard





Users can specify CSS rule sets too 

Why? Accessibility & other reasons 

» A more readable font 

» All fonts are at least a certain size 
» Always enable text-decoration: underline so 

links are obvious 
» See outlines around elements with keyboard focus 

using outline: solid



Firefox has always allowed users to create their own 
styles in a file called userContent.css that goes into 
your Firefox Profile

(Look in the slides’ Notes for more info about your Profile & userContent.css)



✏ SIDE NOTE

As of Firefox 69, userContent.css isn’t supported 
by default unless users first enable the feature 

1. Type about:config in the Firefox address bar & 
select Enter 

2. Click the button that confirms you Accept the Risk 
and Continue 

3. In the box at the top, search for toolkit.  
legacyUserProfileCustomizations.stylesheets 

4. Double-click on the resulting line to toggle to true 
5. Restart Firefox



Internet Explorer actually 
had good support for user 
CSS



Chrome 33 (2014) dropped support for a user styles file



Chrome 33 (2014) dropped support for a user styles file



Edge: Never supported a user styles file!



Edge: Never supported a user styles file!



Safari — I created safari.css for my own use



My safari.css file 

html {

  font-family: "Source Sans Pro", sans-serif;

}

h1, h2, h3, h4, h5, h6 {

  font-family: "Georgia Pro", serif;

}

code, kbd, pre, samp, tt, var {

  font-family: "Source Code Pro", monospace;

}



✏ SIDE NOTE

Browser makers’ response when asked about missing 
support for a user styles file: “Get an extension” 

Do get:  

» Stylus for Chromium-based browsers & Firefox 
(which is excellent & removes all analytics, telemetry, 
& data collection) 

» Cascadea for Safari 

Do not get: Stylish 🚫 (was good, but now it’s spyware)



Default, without Stylus































Authors (developers) can specify CSS (obviously!)



If a user’s CSS contradicts a author’s CSS, the user can 
make sure hers “wins” 

Use !important after a declaration & before the ; 

p {

  font-size: 36px !important;

}

However, CSS authors can do the same thing!



My safari.css file 

html {

  font-family: "Source Sans Pro", sans-serif;

}

h1, h2, h3, h4, h5, h6 {

  font-family: "Georgia Pro", serif;

}

code, kbd, pre, samp, tt, var {

  font-family: "Source Code Pro", monospace;

}

Notice: no !important



The order of origin & importance 

AKA 

The order in which stylesheets are weighted, from 
lightest to heaviest



Browser 
 
User 
 
Author 
 
Author !important 
 
User !important 
 
Browser !important

Order of 
origin & 
importance, 
from lightest 
to heaviest



Browser 
 
User 
 
Author 
 
Author !important 
 
User !important 
 
Browser !important

Order of 
origin & 
importance, 
from lightest 
to heaviest



Author & Author !important?! 

Why are you contradicting yourself?



Do I contradict myself? 
Very well then I contradict 
myself, 
(I am large, I contain 
multitudes.) 

From Walt Whitman’s 
“Song of Myself” in Leaves 
of Grass



You’re not contradicting yourself (hopefully!) 

What if you’re using Bootstrap & its default CSS? 

<link rel="stylesheet" href="bootstrap.css">

Is that CSS coming from the browser, user, or author?



You will want to override some of Bootstrap’s choices 

<link rel="stylesheet" href="bootstrap.css">

<link rel="stylesheet" href="me.css">

Author vs. author 

Sometimes, you will have to use !important to beat the 
other author



✏ SIDE NOTE

The browser can use !important, & it outweighs 
everyone else 

Fortunately, browsers only use !important on very few 
declarations 

For instance, I looked through Firefox’s default CSS & 
found only 11 uses of !important



✏ SIDE NOTE

audio:not([controls]) {

  display: none !important;

} 

This would match <audio src="cthulhu.mp3"> 

The CSS means that if <audio> does not have the 
controls attribute, do not display the <audio> (which 
makes sense — if there are no controls, how else are you 
going to view or interact with it?)



Be careful using !important 

“!important: 3 seconds to type, 3 years to remove.”  
—Harry Roberts 

“!important is the Hammer of Thor, smiting 
everything in its path.” —Jans Carton 

Only use it as a last resort



Inline 
(style="…")





Remember at the beginning how we talked about inline 
styles (<p style="font-size: 18px;">) & we gave 
several reasons why you should avoid them? 

Here’s another reason: they hamper the Cascade



In the Cascade, inline styles are always assigned to the 
author in terms of Origin 

And in terms of Specificity, coming up next, inline styles 
outweigh anything else 

So inline styles really short circuit the Cascade — yet 
another great reason to avoid them



Specificity





Specificity asks how specific is each selector? 

Each simple selector is assigned a weight value 

The greater the weight, the more specific the selector

In other words, with great weight comes great specificity      😜



Take the numbers & place them a,b,c, e.g., 0,2,1

Selector(s) Column

1 × #ID a

1 × .class, :pseudo-class, & [attribute] b

1 × type & ::pseudo-element c



a b c Total

* 0,0,0

li 1 0,0,1

.foo 1 0,1,0

#chapter1 1 1,0,0



Remember, compound & complex selectors are made 
up of multiple simple selectors 

Simply add their simple selector weight values together 

p.foo.bar (compound) is made up of 1 type & 2 
classes, so 0,2,1 

.foo > cite (complex) is composed of 1 class & 1 type, 
so 0,1,1



The following are ignored when calculating 
specificity: 

» Combinators: ␣, >, +, ~ 
» Universal selector: * 
» :where() & its contents 
» :is(), :not(), or :has() (but not the contents — the 

most specific selector is counted!): :not(.but-this-
part-is-counted)





a b c Total

* 0,0,0

li 1 0,0,1

.foo 1 0,1,0

#chapter1 1 1,0,0

ul li 1 × 2 0,0,2

.foo > li 1 1 0,1,1

ul ol li.steps 1 1 × 3 0,1,3

li.steps.mech 1 × 2 1 0,2,1

style="foo" ∞



Any value > 0 in a 
outweighs any value > 0 in 
b, which outweighs any 
value > 0 in c 

(a>0) > (b>0) > (c>0) 

1 in a outweighs the 26 in b



Visual Studio Code shows you the specificity of a 
selector when you hover over it in your CSS & what it 
means visually









Order





Later CSS in the stylesheet wins over earlier CSS



main.css: 

.blue {color: blue}  

.red {color: red}

index.html: 

<p class="red blue">  
  What color am I?  
</p>



main.css: 

.blue {color: blue}  

.red {color: red}

index.html:  

<p class="red blue">  
  What color am I?  
</p>



main.css: 

.red {color: red}  

.blue {color: blue}

index.html: 

<p class="blue red">  
  What color am I?  
</p>



main.css: 

.red {color: red}  

.blue {color: blue}

index.html:  

<p class="blue red">  
  What color am I?  
</p>



The Cascade





Let me walk you through a real example that happened 
to me in which knowing how the Cascade works made 
my life a lot easier



Here’s some code I have on a website: 

<div class="callOut">

  <p>

    For the next 2 weeks… 
  </p>

</div>

.callOut {

  background-color: #E6E8F2;

  margin: 1em 1em 2em 1em;

  padding: 1em;

  border: 1px #ccc solid;

  border-radius: 1em;

}



The result! 

However…





That extra space at the 
bottom really bothers me



To fix it, I put this in my CSS at lines 194–196: 

.callOut > p:last-child {

  margin-bottom: 0;

}

Let me explain what that means…



.callOut > p:last-child {

  margin-bottom: 0;

}

p:last-child is a 
pseudo-class that 
means the <p> that 
is the last child of 
(not descendant of) 
the .callOut class

> is a combinator that selects the 
direct children of (not descendants 
of) the .callOut class

So this selects the <p> that is the last direct child of 
the .callOut class



.callOut > p:last-child {

  margin-bottom: 0;

}

<div class="callOut">

  <p>foo</p>

  <p>bar</p>

  <p>baz</p>

  <p>quz</p>

  <blockquote>

    <p>quux</p>

  </blockquote>

</div>

Selected!

Not selected, as this <p> is 
not the last direct child

EX
A
M
P
LE



Why use this? 

.callOut > p:last-child {

  margin-bottom: 0;

}

Why not just use this? 

.callOut > p {

  margin-bottom: 0;

}

Because sometimes there are 2 or more paragraphs inside  
.callOut — & I don’t want to select every paragraph



So back to where I was… I put this in my CSS at line 
194: 

.callOut > p:last-child {

  margin-bottom: 0;

}

Let’s check the webpage…



Nothing changed! 😡



Why didn’t it work?  

Let’s open the Inspector & find out why





Hmmm… mine is being beaten by earlier code



Lines 146–148: 
#content p {

  margin-bottom: 12px;

} 

Lines 194–196: 
.callOut > p:last-child {

  margin-bottom: 0;

} 

Why isn’t mine winning since it’s later in order?



Lines 146–148: 
#content p {

  margin-bottom: 12px;

} 

Lines 194–196: 
.callOut > p:last-child {

  margin-bottom: 0;

} 

Is origin & importance causing the 1st declaration block 
to win? 🙅



Lines 146–148: 
#content p {

  margin-bottom: 12px;

} 

Lines 194–196: 
.callOut > p:last-child {

  margin-bottom: 0;

} 

Is specificity causing the 1st declaration block to win? 🤔



#content p {

  margin-bottom: 12px;

}

Specificity 

(#content = 1×a) +  
(p = 1×c) =  
1,0,1

.callOut > p:last-

child {

  margin-bottom: 0;

} 

Specificity 

(.callout = 1×b) +  
(p = 1×c) +  
(:last-child = 1×b) =  
0,2,1



Lines 146–148: 
#content p {

  margin-bottom: 12px;

} 

Lines 194–196: 
.callOut > p:last-child {

  margin-bottom: 0;

} 

Because specificity meant the 1st declaration block had 
the most weight, order never entered into the picture

1,0,1

0,2,1



Specificity won 🎉

Nope — tied

Never got to it

Nope — not present



There are 3 solutions to this problem



Lines 146–148: 
#content p {

  margin-bottom: 12px;

} 

Lines 194–196: 
.callOut > p:last-child {

  margin-bottom: 0 !important;

} 

Adding !important makes the 2nd style rule win due to 
origin & importance, so specificity & order never come into 
play



Never got to it

!important won immediately

Never got to it

Never got to it



Lines 146–148: 
#content p {

  margin-bottom: 12px;

} 

Lines 194–196: 
#content .callOut > p:last-child {

  margin-bottom: 0;

} 

Adding #content to line 194 makes the 2nd style rule win 
due to specificity, so order & importance never comes into 
play

1,0,1

1,2,1



1,2,1 beats 1,0,1

Nope — tied

Never got to it

Nope — not present



Lines 146–148: 
#content p {

  margin-bottom: 12px;

} 

Lines 194–196: 
.callOut > p:last-child {

  margin-bottom: 0;

} 

Deleting #content on line 146 makes the 2nd style rule win 
due to specificity, but I can’t do that or things will break!

0,0,1

0,2,1



Much better!



Much better!



Much better!

Bonus question: how do we get rid of those extra pixels at 
the top?



Then I realized that <div class="callOut"> doesn’t 
always end with <p>, so I fixed that: 

#content .callOut > :last-child {

  margin-bottom: 0;

}

Now it’s weighted to win and selecting the correct DOM 
objects

Remember, :last-child is the same as *:last-child



Tools



Books



Jon Duckett’s HTML & 
CSS: Design & Build 
Websites 

Great overview of (some) 
HTML5 & CSS2 (& some 
CSS3) 

Getting pretty out of date, 
though (published in 
2011), but still good for the 
basics



References



696 terms as of April 2022!







Some of the Guides on CSS Tricks (+ many more!): 

» A Complete Guide to Flexbox ★ 

» Media Queries for Standard Devices 

» A Complete Guide to Grid ★ 

» A Complete Guide to the Table Element 
» Centering in CSS: A Complete Guide 
» A Complete Guide to CSS Cascade Layers 
» A Nerd’s Guide to Color on the Web 
» A Complete Guide to Data Attributes







apps.workflower.fi/vocabs/css/







pinboard.in/u:rsgranne/t:css



Browser Tools



Built-in developer tools (aka DevTools or the Inspector) 
are excellent









Color Pickers



System Color Picker by Sindre Sorhus 

Color picker 

sindresorhus.com/system-color-picker 

$0 in the Mac App Store (& open source!)

https://sindresorhus.com/system-color-picker




Color Wheel Sliders



Color Palettes Open palettes generated elsewhere



Pencils

Supports 
hexadecimal, HSL, 
RGB, & OKLCH

Add favorites



Color Picker, from Microsoft PowerToys 

One of many small, very useful tools 

$0 

docs.microsoft.com/en-us/windows/powertoys/

http://docs.microsoft.com/en-us/windows/powertoys/








Slides 

granneman.com/downloads/web-dev/CSS-

Overview-Condensed.pdf 

chnsa.ws/css-condensed-slides

Notes 

granneman.com/downloads/web-dev/CSS-

Overview-Condensed.txt 

chnsa.ws/css-condensed-notes

https://granneman.com/downloads/web-dev/CSS-Overview-Condensed.pdf
https://chnsa.ws/css-condensed-slides
https://granneman.com/downloads/web-dev/CSS-Overview-Condensed.txt
https://chnsa.ws/css-condensed-notes


All of my presentations 

granneman.com/presentations/all-

presentations 

chnsa.ws/all-presentations

https://granneman.com/presentations/all-presentations
https://chnsa.ws/all-presentations


Thank you! 

scott@granneman.com 
granneman.com 
@scottgranneman@mastodon.social 

jans@websanity.com 
websanity.com



CSS Overview Condensed 
Selectors, Integration, Inheritance, Cascading

R. Scott Granneman r Jans Carton 
 

© 2009 R. Scott Granneman • v3.4 2023-10-10 • Licensed CC BY-SA 4.0 



Bonus



Changelog 

2025-03-03 3.6: Updated theme to Granneman 1.14; minor 
formatting & wording fixes; labeled browser processing 
pipeline; updated number of Web APIs; hid Opera’s built-in 
CSS; Color Picker supports OKLCH; added quotation re: 
developer understanding of CSS 

2024-10-14 3.5: Changed Twitter link to Mastodon; added 
more quotes re: developer attitudes towards CSS; replaced 
Separation of Concerns slide with better one; added better 
example for descendant combinator; updated number of 
selectors; better examples for selector list



Changelog 

2023-10-10 3.4: Added another slide on terminology to Basic 
Selectors; updated Page Fragment Identifiers to be a lot 
clearer; added slide showing HTML & DOM tree; converted 
theme to Granneman 1.11; minor formatting & wording fixes; 
increased %age of all websites using CSS; expanded 
explanations of complex selectors; added Bonus section & 
moved slides for * there, then simplified example for *; made 
The Cascade a little clearer; minor fixes in Cascading Style 
Sheets; clarified example using * with child combinator; slowed 
video for Page Fragment Identifiers by 50%; added hateful 
comment re: CSS



Changelog 

2023-03-30 3.3: Updated Cascade diagram to fix 
spelling mistake 

2023-03-14 3.2: Added slide showing block & inline 
boxes in <span> & <div>; added example for browser’s 
use of !important; minor changes; greatly expanded * 
example; added Chapter 3 slides for Page Fragment 
Identifiers & JavaScript Hooks; added short video 
showing page fragments in action



Changelog 

2022-11-21 3.1: Added note that <font> (separation of 
concerns) is obsolete 

2022-10-04 3.0: (con’t. from ) fixed links & 
screenshot for System Color Picker; re-did IE user CSS 
slide layout; re-did all Cascade screenshots; made my 
Cascade example clearer; linked to Pixel Winch; many 
other fixes, corrections, & improvements; so many 
changes I bumped it up to 3.0!



Changelog 

2022-10-04 3.0: (con’t. from ) better labeling & 
citations for Formatting; added full citations & better 
class names to <span> & <div>; added citations & 
annotations to Inheritance; changed Key Selectors to 
Selector Subjects; added number of inherited 
properties; better images for Formatting; better 
explained when rendering engine matches, inherits, or 
cascades; ; removed CSS Reset Keywords; added more 
info to Jon Duckett’s book; (con’t. )



Changelog 

2022-10-04 3.0: (con’t. from ) reworded @import; 
updated list of CSS 4 selectors & added citations; moved 
* last in Simple Selectors; you can override type 
selectors; details re: multiple classes; better on emojis 
for class names; added note re: .center; better 
annotations for #ID; moved Universal after ID; better 
labels for key selectors; removed complex example from 
Child Combinator & better labeled remaining examples; 
better labeling for Selector List examples; (con’t. )



Changelog 

2022-10-04 3.0: In Color Pickers, replaced Sip with 
System Color Picker by Sindre Sorhus; added disco music 
in Why CSS?; changed ruleset to style rule per new W3C 
renaming; between annotations when introducing style 
rules; deleted details about CSS & UTF-8; added why you 
should keep CSS <link>s to a minimum; moved reasons 
for embedding to Notes; condensed why not to use inline 
styles; condensed @import; better annotations on The 
Thing & the DOM; added citations; (con’t. )



Changelog 

2022-07-24 2.12: Added Color Picker from Microsoft 
PowerToys to Color Pickers & got rid of other Windows-
based tools; added warning re descendant combinator  

2022-04-15 2.11: Better specificity calculation screenshot; 
added UserStyles.world screenshots to Stylus; removed a 
few Stylus screenshots; added chart & Raising Arizona clip 
to Cascade to show conflicting directions; updated Cascade 
diagrams; moved example of using complex selector 
instead of class from descendent to child combinator



Changelog 

2022-04-15 2.10: Added or updated all citations in 
Specificity; more examples of what get ignored when 
calculating specificity; updated theme to Granneman 1.7; 
minor formatting corrections; updated definition of the 
DOM; better universal selector example; moved more 
scoped universal selector example to child combinator; 
added shish kebab icon to Kebab case; new screenshot for 
<div>; added OpenDyslexic3 font to Origin & 
Importance; added screenshots of Stylus; new screenshots 
of Inspectors; add more complete, correct citations



Changelog 

2021-11-17 2.9: Added Side Note re camelCase & other 
case names; added simple Browser Processing Pipeline 
before full diagram as reminder; added much better 
example of * in Universal; clarified Specificity; added 
Spider-Man head icon to make my joke super-obvious 

2021-08-16 2.8: Explained how @import is different from 
Sass @import; removed wrong advice to put @charset at 
top of style sheet with emoji; more detail about @charset 
& how parsers detect UTF-8



Changelog 

2021-07-13 2.7: Added another explanation of the DOM, 
from Wikipedia; more improvements to Specificity; 
updated chart in Reset Keywords; added conceptual 
models to DOM 

2021-04-12 2.6: Added in Notes that class & ID names are 
identifiers; added better explanation & chart for Complex 
Selectors Using Combinators; completely re-did Specificity 
section; added Side Note under Linking about using 
@charset "utf-8";; fixed W3C logo in MDN members



Changelog 

2020-11-30 2.5: Re-ordered & changed wording slightly  
in Specificity; updated examples in Compound Selectors; 
added detail re: Shadow DOM & the Cascade; changed 
Importance to Order & Importance to match the spec 
more closely; updated Cascade diagram & improved 
wording throughout Cascading Style Sheets 

2020-07-31 2.4: Created diagram for the Browser 
Processing Pipeline; made Descendant Combinator 
examples clearer by adding arrows



Changelog 

2020-07-21 2.3: Added list of Web APIs after 
JavaScript; added slides about design patterns in 
Formatting; added example of looking up property’s 
initial value at MDN; updated screenshot for initial 
value & added explanation to it; added additional, 
easier examples for descendant & child combinators; 
changed CSS Resets to CSS Reset Keywords; improved 
wording explaining inherit value; moved Key 
Selectors at the beginning of Complex Selectors



Changelog 

2020-07-15 2.2: Minor fixes; re-did Specificity 
completely; removed the Miller’s Crossing example; 
made clearer in Order what is in HTML & what is in 
CSS 

2020-07-10 2.1: Added note about Safari bug with all: 
unset



Changelog 

2020-07-09 2.0: (con’t. from ) added better 
descriptions of <span> & <div>; changed “Default 
inherited properties” to “Partial list of inherited 
properties” & added text-edge; added detail to MDN’s 
CSS Reference in Tools; updated screenshots of CSS-
Tricks in Tools; added CSS Resets section for initial, 
inherit, unset, revert, & all; added explanation of 
CSS keywords; so many changes I bumped version 
number up to 2!



Changelog 

2020-07-09 2.0: Added more details to Specificity; minor 
edits; added definition of simple selector; moved Key 
Selectors under Complex Selectors; for user styles, gave 
more detail re: Firefox’s userContent.css, Chrome, & 
extensions, & updated screenshot of Safari’s Advanced 
Preferences; better screenshot for embedded styles; 
updated screenshot for .class selector; updated table 
showing difference between HTML & CSS terms; added 
order Jans places things in his stylesheets; (con’t. )



Changelog 

2018-12-06 1.20: Added screenshots showing embedding 
with <style> & how to link to main.css; added logos for 
MDN supporters; *:first-child is the same as :first-
child; added Side Note re: using 2 class attributes; in 
Formatting, always put ; at the end of each declaration; 
added CSS Tricks to Tools; in Class, told viewer to see 
Compound to learn how to match an element with 2 
classes; screenshots for @import & reorganized those 
slides; minor wording changes; better example for 
Compound selectors; replaced ID screenshots



Changelog 

2018-11-21 1.19: Called out items on browser processing 
pipeline illustration; fixed image for multiple classes 
(<figurecaption>?!); updated screenshots for child 
combinator; for selector lists, removed silly example & 
added headings slide; added Side Note on <div> that it 
should semantically be <ol>; fixed Cascade example so 
proper method is shown; added slides showing difference 
between descendant & child combinators; added table on 
Time & User Perception to @import; replaced inherit 
screenshot



Changelog 

2018-10-01 1.18: Added how DOM changes attribute-
value pairs; replaced DOM section with The Browser 
Processing Pipeline; fixed Default inherited properties 
slide; updated theme to Granneman 1.5; added Walt 
Whitman on contradicting yourself 

2017-11-06 1.17: Improved key selectors; added 
reasons for user CSS



Changelog 

2017-10-30 1.16: Added Just Color Picker; added 
screenshot of ColorPro website; changed color of some 
arrows & shapes to Tulip Tree (#E8A433); better 
solutions to specificity problem with .callOut; fixed 
wording to be correct &/or more specific; added emoji 
for class names; added Opera user-agent styles; better 
examples for Key Selectors; applied Granneman 1.4 
theme; fixed formatting issues; added default order I 
use in stylesheets



Changelog 

2017-10-25 1.15: Added better examples for DOM vs 
source code; organized Basic Selectors much better; 
moved Key Selectors, IDs as page fragment identifiers & 
JavaScript hooks, & Compound Selector example from 
CSS Selectors to here; gave full list of selectors & grayed 
out ones we’re not covering here; fixed wording 
introducing the Cascade



Changelog 

2017-10-18 1.14: Took out details about how to turn on 
Firefox 3D View, since it’s not longer supported; made 
Cascading chapter slide italicized; corrected & added info 
on anonymous boxes; in History, hid modules & added 
Can I Use, minor fixes & corrections 

2016-09-23 1.13: Moved slide comparing class & ID; 
under Importance, rearranged IE & Safari & added Firefox 
for Windows, Chrome, & Edge; re-ordered examples of 
Descendant Combinator; fixed formatting errors



Changelog 

2016-09-16 1.12: Updated theme to Granneman 1.2; 
small changes in wording to make things clearer; 
cleaned up formatting in a few places; added slide re: 
using classes instead of IDs; fixed slides in Selector 
Grouping; changed Important example from 
WordPress to Bootstrap; fixed wrong information re: 
class & id values & clarified; added example for 
Descendant Combinator



Changelog 

2016-01-20 1.11: Added slide re: CSS3 Taxonomy & 
Status; better explanation why we need <div>; added note 
re: specificity 

2016-01-11 1.10: Minor improvements taken from CSS - 
Selectors; added Child Combinator to Selectors; added 
another example of Child Combinator; added screenshots 
of browser CSS; explained author vs author in 
Importance; explained how my Safari CSS works; added a 
long example showing how the Cascade works in practice



Changelog 

2015-12-13 1.9: Clarified source of DOM quote; changed numbers 
of selectors; got rid of E & F in selectors & made them clearer; 
changed .bigRed to .big-red; clarified source of class & ID names; 
add tweet re: CSS to beginning 

2015-05-10 1.8: Added info about CSS 4; clarified that <span> & 
<div> draw boxes; added additional names of directories that are 
always created; changed “What Google prefers” to “… uses”; 
removed Hues & added Sip to Color Pickers; fixed URL & 
screenshots for CSS Vocabulary; moved Viewport Resizer to 
Bootstrap; for Separation of Concerns, added “& Meaning” to 
HTML



Changelog 

2015-03-06 1.7: Added another example of selector 
grouping; added details about resource inlining 

2015-01-12 1.6: Added my safari.css file; clarified & 
added info on specificity 

2015-01-11 1.5: Clarified Inheritance 

2014-09-27 1.4: Changed “browser” to “rendering engine” 
in a few places where it made sense



Changelog 

2014-08-12 1.3: Improved Descendant Selector examples; 
improved wording & added slides in DOM section; improved 
Cascade diagram; fixed <div> screenshot; added URLs for 
<div> & <span> screenshots; fixed Viewport Resizer 
screenshots 

2014-08-10 1.2: Added DOM spec info & screenshots of DOM 
& Source Code; added details about Firefox Web Dev Tools 

2014-08-04 1.1.1: Added definition of anonymous object



Licensing of this work 

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. 
 
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/. 

You are free to: 

» Share — copy and redistribute the material in any medium or format 
» Adapt — remix, transform, and build upon the material for any purpose, even commercially 

Under the following terms: 

Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were made. 
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your 
use. Give credit to: 

Scott Granneman • www.granneman.com • scott@granneman.com 

Share Alike. If you remix, transform, or build upon the material, you must distribute your contributions under 
the same license as the original. 

No additional restrictions. You may not apply legal terms or technological measures that legally restrict others 
from doing anything the license permits. 

Questions? Email scott@granneman.com


