
CSS Preprocessors
Extending CSS with Sass to Provide Extra Functionality

© 2016 R. Scott Granneman
Last updated 2020-07-13

You are free to use this work, with certain restrictions.
For full licensing information, please see the last slide/page.

R. Scott Granneman r Jans Carton

1.8

Notes & URLs for this presentation can be found…

» underneath the link to this slide show on
granneman.com

» at files.granneman.com/presentations/webdev/CSS-
Preprocessors.txt

Background

What’s a preprocessor?

A program that processes input data & produces output
that is then used as input to another program

Input → Preprocessor → Output/Input → Program

Input Markdown-formatted file

Preprocessor Markdown converter

Output/Input HTML

Program Browser rendering engine

Common pre-processors

Markdown, Textile, & AsciiDoc HTML

TypeScript JavaScript

Sass, Less, & PostCSS CSS

Markdown is turned into HTML by default

Can also be exported to PDF, Word, EPUB, HTML slide
shows, & much more

Some sample Markdown syntax

Paragraph

Blank lines before & after

<p>The older matters which had made the sculptor’s dream and bas-relief so significant to
my uncle formed the subject of the second half of his long manuscript. Once before, it
appears, Professor Angell had seen the hellish outlines of the nameless monstrosity, puzzled
over the unknown hieroglyphics, and heard the ominous syllables which can be rendered
only as “Cthulhu”; and all this in so stirring and horrible a connexion that it is small wonder
he pursued young Wilcox with queries and demands for data.</p>

<p>The earlier experience had come in 1908, seventeen years before, when the American
Archaeological Society held its annual meeting in St. Louis. Professor Angell, as befitted one
of his authority and attainments, had had a prominent part in all the deliberations; and was
one of the first to be approached by the several outsiders who took advantage of the
convocation to offer questions for correct answering and problems for expert solution.</p>

<p>The chief of these outsiders, and in a short time the focus of interest for the entire
meeting, was a commonplace-looking middle-aged man who had travelled all the way from
New Orleans for certain special information unobtainable from any local source. His name
was John Raymond Legrasse, and he was by profession an Inspector of Police. With him he
bore the subject of his visit, a grotesque, repulsive, and apparently very ancient stone
statuette whose origin he was at a loss to determine.</p>

Headings

Preface with #, ##, ###, ####, #####, or ######

OR

Underline with = for Heading 1
Underline with - for Heading 2

<h1>H.P. Lovecraft’s “The Call of Cthulhu”</h1>

<p>(Found Among the Papers of the Late Francis Wayland Thurston, of Boston)</p>

<h2>I. The Horror in Clay.</h2>

<p>The most merciful thing in the world, I think, is the inability of the human mind to
correlate all its contents.</p>

<h2>II. The Tale of Inspector Legrasse.</h2>

<p>The older matters which had made the sculptor’s dream and bas-relief so significant
to my uncle formed the subject of the second half of his long manuscript.</p>

<h2>III. The Madness from the Sea.</h2>

<p>If heaven ever wishes to grant me a boon, it will be a total effacing of the results of a
mere chance which fixed my eye on a certain stray piece of shelf-paper.</p>

Bulleted Lists

Begin line with * or + or -

Indent 4 spaces or 1 tab for sub-lists

<p>These are some of the best H.P. Lovecraft stories.</p>

 Cthulhu

 The Call of Cthulhu
 The Dunwich Horror
 The Whisperer in Darkness

 Yog-Sothoth

 The Case of Charles Dexter Ward

 Shoggoths

 The Shadow over Innsmouth
 At the Mountains of Madness

 Nyarlathotep

 The Dreams in the Witch House
 The Rats in the Walls

MacDown

macdown.uranusjr.com

Free (& open source!)

Full-featured & actively developed

MarkdownPad

markdownpad.com

Free, or $15 gets you no usage restrictions, support for
GitHub Flavored Markdown & Markdown Extra, &
many other features

Less

Created in 2009 & inspired by Sass

Provides variables, nesting, mixins, operators, & functions

Can convert Less code on-the-fly in the client browser
using less.js

Open source

lesscss.org

“Syntactically Awesome Style Sheets”

Sass is a language with 2 different syntaxes (use SCSS)

2006 2010 (Sass 3)

Syntax Indented SCSS (“Sassy CSS”)

.ending .sass .scss

Uses {} & ; No Yes

Assignment = :

Mixins = & + @mixin & @include

The big difference between Sass & SCSS syntax: SCSS
extends CSS, so every .css file is also a valid .scss file
(but not the other way!)

So you’ve decided to start using Sass (SCSS) & you
already have CSS…

1. Start with your CSS file; e.g., main.css
2. Change the extension to .scss so it’s main.scss
3. Start converting some of the existing CSS in main.scss

to use SCSS syntax
4. When main.scss is run through a preprocessor to

create a new main.css file…
1. any Sass is converted to CSS & inserted into

main.css
2. any CSS is just passed along into main.css

New Sass

Old Sass

Existing CSS
Sass
pre-
processor

New CSS

Older CSS

Existing CSS

main.scss main.css

Bootstrap 3 used Less

Bootstrap 4 uses Sass (SCSS)

Sass seems to be “winning”

PRO TIP

Never edit the CSS after it is generated by Sass!

💡

PRO TIP

Never edit the CSS after it is generated by Sass!

💡

Sass
Features

Variables & Functions

Nesting

Mixins

@import Directive

Comments

Variables

Variables allow you to set up common CSS styles

$accent-color: #4399FA;

$default-margin: 1em;

$sans-serif: "Source Sans Pro", Verdana, sans-
serif;

$serif: "Georgia Pro", Georgia, serif;

DRY: Don’t Repeat
Yourself

“Every piece of knowledge
must have a single,
unambiguous,
authoritative
representation within a
system.”

#toc {
 background-color: hsl(10,
72%, 53%);
}

.answer {
 background-color: hsl(10,
72%, 53%);
}

footer {
 background-color: hsl(10,
72%, 53%);
}

$main-bg-color: hsl(10, 72%,
53%);

#toc {
 background-color: $main-bg-
color;
}

.answer {
 background-color: $main-bg-
color;
}

footer {
 background-color: $main-bg-
color;
}

CSS: not DRY Sass: DRY

Easier to recognize when looking through code

Which is simpler to understand: hsl(33,100%,88.4%)
or $main-bg-color?

Scope

Variables declared at the top of your Sass are global, so
they can be accessed anywhere

$main-bg-color: dodgerblue;

.cthulhu-baseball {
 background-color: $main-bg-color;
}

blockquote {
 background-color: $main-bg-color;
}

You can also create local variables that are scoped within a
particular block of Sass by declaring the variable inside
curly braces, so they can only be accessed within that block

.cthulhu-baseball {
 $bg-color: dodgerblue;
 background-color: $bg-color;
}

.yog-sothoth-baseball {
 background-color: $bg-color;
}

🐙👍

🌌👎 (this will not work,
& will get you eaten)

Because they are separate, it’s possible to declare a local
variable with the same name as a global variable

The 2 are separate from each other, which ensures that
someone writing a local variable doesn’t accidentally
stomp on a global variable they didn’t know about

You can overwrite a global variable from within a local scope if you
use the !global flag — & it will carry forward with the new value

This might help you with mixins, for instance

$main-bg-color: dodgerblue;

.cthulhu-baseball {
 $main-bg-color: seagreen !global;
 background-color: $main-bg-color;
}

.yog-sothoth-baseball {
 background-color: $main-bg-color;
}

Resolves to seagreen;

Cthulhu 🐙 is happy

Also resolves to seagreen;
Yog-Sothoth expected dodgerblue;

Yog-Sothoth 🌌 eats you

Math Operators

You can use math operations along with variables

+ Addition

- Subtraction

* Multiplication

/ Division

$default-margin: 1em;

$default-border: $default-margin/2;

footer {
 margin-top: $default-margin;
 border-top: $default-border dotted gray;
}

$default-margin: 1em;

h1, h2, h3, h4, h5, h6 {
 margin: $default-margin*1.5 $default-margin;
}

<absolute-size> Scaling Factor HTML hx

xx-large 2/1 <h1>

x-large 3/2 <h2>

large 6/5 <h3>

medium 1 <h4>

small 8/9 <h5>

x-small 3/4

xx-small 3/5 <h6>

Darken & Lighten Functions

Variables can use darken & lighten functions which
allow you to adjust colors in a single palette

darken(<color>, <percentage>)
lighten(<color>, <percentage>)

Do not use these functions — the colors aren’t accurate

Nesting

1. Simple selectors

» Universal
» Type
» Class
» ID
» Pseudo-classes
» Pseudo-elements
» Attribute

2. Compound selectors

3. Complex selectors
(using combinators)

» Descendant
» Child
» Adjacent sibling
» General sibling

4. Selector list

Nesting provides very useful features

» Create complex selectors using combinators; e.g.,
blockquote > h2

» Create compound selectors (which glue together
simple selectors); e.g., p.intro

» Use & as a parent selector
» Nested properties

Nesting lets you avoid repeating selectors by literally
nesting them inside other declarations

Complex Selectors
with Combinators

A combinator combines 2 selectors together into 1

Symbol Name Ex. Selected B

> (space) Descendant A B Any descendant of A

> Child A > B Direct children of A

+ Adjacent Sibling A + B Next sibling after A

~ (tilde) General Sibling A ~ B All siblings after A

Sass makes it easy to create descendant combinators

Benefits

» section selector only has to be written once
» Immediately clear visually that both the header and
blockquote styles are applied at the same level

» Nested Sass can match HTML structure, which
makes understanding how the two work together
much easier

» Much better clarity & efficiency

So remember, when you nest like this

footer {
 p {
 font-family: $serif-font
 }
}

footer & p are joined with a space, the descendant combinator

footer p {
 font-family: Georgia, serif;
}

You can nest with other combinators too

Anytime you have this structure in Sass

selectorA {
 [combinator] selectorB {
 property: value;
 }
}

It’s going to compile in CSS as

selectorA [combinator] selectorB {
 property: value;
}

What if you have declarations just for selectorA as well
as declarations for descendants of selectorA?

Compound Selectors

A compound selector consists of a chain of simple
selectors (*, p, .class, #id, :pseudo-
class, ::pseudo-element, or p[attribute])
connected together without a combinator, e.g.:

» p.class
» .intro::first-line
» a[title^="Lovecraft"]

& replicates the nested rule’s parent

Most commonly used when you need to glue selectors
together (pseudo-classes, pseudo-elements, attribute
selectors) to create compound selectors; e.g., p:foo or
a[href*=cthulhu]

& should never be followed by a space if you’re building
a compound selector, or you don’t need it

.class
#id
::after
::before
::first-letter
::first-line
:active
:disabled
:empty
:enabled
:first-child
:first-of-type
:focus

:hover
:lang()
:last-child
:last-of-type
:link
:not(s)
:nth-child(n)
:nth-last-
 child(n)
:nth-last-of-
 type(n)
:nth-of-
 type(n)

:only-child
:only-of-type
:root
:target
:visited
[foo]
[foo*="bar"]
[foo^="bar"]
[foo="bar"]
[foo|="en"]
[foo~="bar"]
[foo$="bar"]

<p class="center note">

.center {
 text-align: center;
}

.note {
 font-size: .9em;
}

.center.note {
 font-style: italic;
}

Selects elements with the
.center class

Selects elements with the
.note class

Selects elements with the
.center and .note classes

Sass makes it easy to select multiple classes

.foo {
 background-color: green;
 &.bar {
 background-color: red;
 }
}

.foo {
 background-color: green;
}

.foo.bar {
 background-color: red;
}

Sass

CSS

& as Sass Parent Selector

& actually reproduces the outer
selector

tr is outside the &, & tbody is
outside tr, & table.movies is
outside tbody, so that why
table.movies tbody tr is the
outer selector

So far we’ve used & to create compound (p.foo)
selectors by putting it at the beginning of nested lines,
e.g.:

p {
 &::first-line {
 font-weight: bold;
 }
}

But you can put the & in other places besides the
beginning of lines, & then & becomes even more useful

When you use the & on a line, the outer selector is
inserted wherever that & is

You might expect this:

table.movies {
 > tbody {
 > tr:hover {
 color: red;
 }
 }

 .sidebar & {
 color: blue;
 }

}

To produce this:

table.movies > tbody >
tr:hover .sidebar
table.movies > tbody >
tr:hover

That is not what happens

Instead, this:

table.movies {
 > tbody {
 > tr:hover {
 color: red;
 }
 }

 .sidebar & {
 color: blue;
 }

}

Actually produces this:

.sidebar table.movies
> tbody > tr:hover

Why? Because the outer
selector (table.movies >
tbody > tr:hover) is
inserted wherever the & is

Nested Properties

Some CSS properties use the same base

font-family, font-size, & font-weight all start with
font-

padding-top, padding-right, padding-bottom, &
padding-left all start with padding-

Why type font- or padding- over & over?

This is a lot of CSS:

font-size: 1.25em;
line-height: 1.5;
font-weight: 700;
font-style: italic;
font-variant: small-caps;
font-family: "Georgia Pro", serif;

Using CSS shorthand properties, we can do this:

font: 700 italic small-caps 1.25em/1.5 "Georgia Pro",
serif;

You can emulate CSS shorthand properties in Sass

✏ SIDE NOTE

Other CSS shorthand properties:

padding: 1em 1.5em;

border: 2px dotted darkgray;

margin: 1em;

animation • background • border-bottom • border-color • border-
left • border-radius • border-right • border-style • border-top
• border-width • column-rule • columns • flex • flex-flow • grid •
grid-area • grid-column • grid-row • grid-template • list-style
• offset • outline • overflow • place-content • place-items •
place-self • text-decoration • transition

✏ SIDE NOTE

Worst. Shorthand. Ever.

background: url(http://placehold.it/150) 20px
20px / auto auto no-repeat scroll padding-box
border-box indigo;

Order matters in several places!

And I left several values out!

Note the : after font!

Warning!

Think before nesting more than 3 levels deep

.lovecraft {
 > .cthulhu {
 > li {
 // Stop! (Maybe?)
 }
 }
}

If you’re deeper than 3 levels, you are creating a very
specific selector

Very reliant on HTML structure, so fragile

Probably also going to be difficult to understand the
generated CSS

Just think first

Mixins

Mixins allow you to write a set of declarations once &
reuse them in any of your stylesheets

Should’ve been called scoped includes

When do you use a mixin?

When you keep repeating a chunk of code over & over
again

Box Styles

Styles for <div class="modal">:

.modal {
 background-color: HSL(0, 0%, 50%);
 border: 4px solid black;
 border-radius: 10px;
 padding: .75em 1.25em;
}

A <button> inside <div class="modal"> will use the
same styles as .modal and will also have its own styles
too

Time for a mixin!

Movies & TV

A table
with the
movies
class

A table
with the
tv class

Mixins
get re-
used
later

Mixins
get re-
used
here

The
table-

base
mixin
gets re-
used

@mixin table-base {
 th {
 text-align: left;
 }
 td,
 th {
 padding: .25em .4em;
 }
}

.movies,

.tv {
 @include table-base;
}

.movies th,

.tv th {
 text-align: left;
}
.movies td,
.movies th,
.tv td,
.tv th {
 padding: .25em .4em;
}

@mixin table-data {
 th {
 background-color:
maroon;
 color: white;
 }
 td {
 border-bottom: 1px
solid maroon;
 }
}

.tv {
 @include table-data;
}

.tv th {
 background-color:
maroon;
 color: white;
}
.tv td {
 border-bottom: 1px
solid maroon;
}

Mixins Using @if Operatives

Repeating breakpoints

@media (max-width: 767px) {
 img.hero {
 display: none;
 }
}

@media (max-width: 767px) {
 .multi-column {
 column-count: 1;
 }
}

Not DRY! Time for a mixin!

@mixin breakpoint($point) {
 @if($point==sm) {
 @media(min-width: 768px) {
 @content
 }
 }
 @if($point==md) {
 @media(min-width: 992px) {
 @content
 }
 }
 @if($point==lg) {
 @media(min-width: 1200px) {
 @content
 }
 }
}

body {
 background-color: pink;
 @include breakpoint(md) {
 background-color:
lightgreen;
 }
}

@mixin breakpoint($point) {
 @if($point==sm) {
 @media(min-width: 768px) {
 @content
 }
 }
 @if($point==md) {
 @media(min-width: 992px) {
 @content
 }
 }
 @if($point==lg) {
 @media(min-width: 1200px) {
 @content
 }
 }
}

body {
 background-color: pink;
 @include breakpoint(md) {
 background-color:
lightgreen;
 }
}

@mixin breakpoint($point) {
 @if($point==sm) {
 @media(min-width: 768px) {
 @content
 }
 }
 @if($point==md) {
 @media(min-width: 992px) {
 @content
 }
 }
 @if($point==lg) {
 @media(min-width: 1200px) {
 @content
 }
 }
}

body {
 background-color: pink;
 @include breakpoint(md) {
 background-color:
lightgreen;
 }
}

@mixin breakpoint($point) {
 @if($point==sm) {
 @media(min-width: 768px) {
 @content
 }
 }
 @if($point==md) {
 @media(min-width: 992px) {
 @content
 }
 }
 @if($point==lg) {
 @media(min-width: 1200px) {
 @content
 }
 }
}

body {
 background-color: pink;
 @include breakpoint(md) {
 background-color:
lightgreen;
 }
}

@mixin breakpoint($point) {
 @if($point==md) {
 @media(min-width: 992px) {
 @content
 }
 }
}

body {
 background-color: pink;
}

@include breakpoint(md) {
 body {
 background-color:
lightgreen;
 }
}

body {
 background-color: pink;
}

@media (min-width: 992px) {
 body {
 background-color:
lightgreen;
 }
}

What about the centering?

html {
 font: 24px "Iowan Old
Style", serif;
 height: 100%;
}

body {
 font-size: 4em;
 min-height: 100%;
 display: flex;
 justify-content:
center;
 align-items: center;
}

Needed to vertically center
the <p>

Needed to vertically center
the <p>

Flexbox!

Flexbox; horizontally centers
<p>

Flexbox; vertically centers
<p>

Why height on <html> & min-height on <body>?

Sass functions are called without any special keyword &
return a value

background-color: darken($main-bg-color, 20%);
→ background-color: hsl(32, 100%, 29%);

Sass mixins are called with @include & inject their
contents within the scope in which they’re called

Advantages of mixins

» Efficient & clean code repetitions
» Greater consistency
» Fewer errors
» Easy alteration of code: only have to update changes

in one place (like CSS itself!)

Collections of Mixins

@import Directive

In CSS, @import allows authors to import other CSS
files

Sass extends @import to import Sass files before
compiling the merged Sass file into CSS

In main.scss:

@import "typography.scss";
@import "navigation.scss";
@import "footer.scss";

All those files get merged into main.scss in that order,
which is then compiled to main.css

Sass files go in the same
directory as the CSS*

*OK, not really, but it’s far easier

The .scss files are
imported into main.scss,
which is then compiled
into main.css

Notice that every .scss file
is also compiled to .css

Why create all those
unnecessary .css files?

*OK, not really, but it’s far easier

Sass supports @import partials

Sass files that start with _ are not compiled into CSS,
but are instead imported as Sass into the merged SCSS
file

_variables.scss

Store your Sass variables in 1 file

When imported, all other Sass files can use those
variables

You obviously don’t want this compiled into CSS; you
want it as a separate file that can merged into
main.scss

So if you want main.scss to be compiled to .css & no
other file, in main.scss you would have:

@import "_navigation.scss";
@import "_footer.scss";
@import "_typography.scss";

None of the files starting with _ are converted to .css

However, all files starting with _ get merged into
main.scss & then compiled to main.css

Contents of main.scss:

@import "_variables.scss";

@import "_fonts.scss";

@import "_typography.scss";

@import "_nav.scss";

@import "_syllabus.scss";

@import "_tables.scss";

@import "_images.scss";

@import "_print.scss";

Comments

CSS comments are single line or multi-line:
/* foo */

Sass comments

» single line: /* foo */ or // foo
» multi-line: /* foo */

/* foo */ comments are compiled into CSS

// foo comments are not compiled into CSS

.foo {
 // That’s it??
 font-family: serif;
 .bar {
 /* Corp. colors */
 // Hideous!! 🤮
 background-color:
blue;
 color: orange;
 }
}

Sass

.foo {
 font-family: serif; }
 .foo .bar {
 /* Corp. colors */
 background-color:
blue;
 color: orange; }

Compiled CSS

Autoprefixer

Autoprefixer has nothing to do with Sass, but is often
used along with it — it’s all part of automating the
process

New features come out in CSS, but sometimes the
property or value isn’t yet nailed down

Browser makers guess what the final answers will be, &
use vendor prefixes so developers can test &
experiment now

When the W3C releases a final spec, all browsers
standardize on that

When flexbox was first introduced, it wasn’t certain
what the value for display would be

.featured {
 display: -webkit-box;
 display: -webkit-flex;
 display: -ms-flexbox;
 display: flex;
}

Always put the final value specified by the W3C last!

-moz- Mozilla Firefox
Gecko-based browsers

-ms- Microsoft Internet Explorer

-webkit- Apple Safari for macOS & iOS
Chromium/Google Chrome
WebKit-based browsers

-webkit-box Safari on macOS 3.1–6
Safari on iOS 3.2–6.1

-webkit-flex Safari on macOS 6.1–8
Safari on iOS 7–8.4
Chrome 21–28

-ms-flexbox Internet Explorer 10

-moz-box Firefox 2–21

flex Firefox 21+
Chrome 29+
IE 11+/Edge
Safari on macOS & iOS 9+

Only include vendor prefixes for browsers you want to
still support

You should revisit your code as browser support
improves & remove old prefixes for browsers you don’t
care about targeting any longer

Firefox 21 came out in April 2013 & is used by 0.01% of
the world, so I can probably remove -moz-box

Who has time to keep track of all this?!

Run autoprefixer, & it…

» adds prefixes where necessary
» scans your CSS & removes outdated prefixes

You tell autoprefixer which browsers (& therefore
prefixes) it should support, e.g.:

» last 2 versions
» last 2 Chrome versions
» Firefox > 20
» last 2 iOS major versions
» > 5% (global)
» > 3% in US
» last 2 years
» > 1%, last 2 versions, Firefox ESR (default)

autoprefixer is a command-line tool, but you can:

» automate running it with gulp or your favorite task
runner

» install plugins for Visual Studio Code, Brackets,
Sublime Text, & other editors

Vendor prefixes are a PITA, bloat stylesheets, &
require a lot of maintenance

Browser makers are moving away from vendor
prefixes in favor of other methods

» @supports
» Browser Advanced Settings (AKA flags)

@supports is a conditional group rule that lets you test if
a browser supports CSS property: value pairs

@supports (display: grid) {
 .grid-container {
 display: grid;
 }
}

If the browser supports display: grid, use it

But what if it does not?

The not keyword lets you specify what will happen if the
browser does not support the property: value pair

@supports not (display: grid) {
 .grid-container {
 float: right;
 }
}

If the browser does not support display: grid, use
float: right instead

You can also chain multiple property checks together
using or or and

@supports (display: -ms-grid) or
 (display: grid) {
 .grid-container {
 display: grid;
 }
}

Best of all, autoprefixer is now automatically taking
care of @supports for you too!

@supports – 12 22 *9 9 28 *4.4

Works with 96.43% of global browsers (July 2020)

Chrome: chrome://flags

Firefox: about:config

Safari: Develop > Experimental Features

Edge (pre-Chromium): about:config

chrome://flags
about:config
about:config
chrome://flags
about:config
about:config

Sass Tools

Visual Studio Code

Live Sass Compiler

Compiles Sass files to CSS on Save

Turn it on

» Click Watch Sass on status bar
» Invoke the Command Palette & enter Live Sass:
Watch Sass

For more, see

» github.com/ritwickdey/vscode-live-sass-compiler
» marketplace.visualstudio.com/items?

itemName=ritwickdey.live-sass

http://github.com/ritwickdey/vscode-live-sass-compiler
http://marketplace.visualstudio.com/items?itemName=ritwickdey.live-sass
http://marketplace.visualstudio.com/items?itemName=ritwickdey.live-sass
http://github.com/ritwickdey/vscode-live-sass-compiler
http://marketplace.visualstudio.com/items?itemName=ritwickdey.live-sass
http://marketplace.visualstudio.com/items?itemName=ritwickdey.live-sass

CodePen

CodePen allows users to enter Sass (Sass or SCSS, Less,
& others) in the CSS box, which is then compiled into
CSS

We don’t need JS, so we close it

Click on the action
button to open
CSS Settings

We don’t need any…
just looking

Click to learn more

Nice!

Don’t really need
to see the HTML…

We typed in SCSS…
let’s see the resulting CSS

Notice it changed from
SCSS to Compiled

Task Runners

You’re working on a project & after every edit to a
Sass file you want to:

» Check your Sass file for errors (lint it)
» Compile Sass to CSS
» Insert vendor prefixes for the last 2 browser versions
» Minimize your CSS
» View the HTML file with the new CSS in a browser

That’s a lot of work to do manually!

The same sort of multi-step process is true for HTML,
JavaScript, images, & many other kinds of files

We need to automate the process as much as possible!

A task runner is a tool that automatically performs
frequent tasks you need done as part of a build process

Can use either a CLI (command-line interface) or a
GUI (graphical user interface)

GUI CLI

CLI Task Runners

2 very popular task runners: Grunt & Gulp

Both allow you to create watched folders

When something happens in a watched folder (e.g., a
file is saved), then certain tasks are automatically run

Grunt

Free & open source JavaScript task runner

6,000+ plugins available via npm (Node Package
Manager)

Used internally by Adobe, Twitter, Mozilla, Bootstrap,
WordPress, Walmart, & Microsoft

Gulp

Free & open source JavaScript task runner

3,600+ plugins available via npm

Requires knowledge of JavaScript to define tasks

Sample gulpfile.js

Jans’ gulpfile.js

From Sass
Back to CSS

The growing influence of Sass (& Less) was noticed by
the W3C, so they’re incorporating ideas from pre-
processors into CSS

Custom Properties

CSS custom properties (formerly called CSS variables)
are very similar in some ways to Sass variables — 
they’re variables, after all — but with big differences too

$main-color: orange;

footer {
 background-color:
$main-color;
}

:root {
 --main-color:
orange;
}

footer {
 background-color:
var(--main-color);
}

Sass CSS custom properties

Sass

$main-color: orange;

CSS

:root {
 --main-color: orange;
}

Define a variable (Sass) or custom property (CSS)

Sass

footer {
 background-color: $main-color;
}

CSS

footer {
 background-color: var(--main-color);
}

Use a variable (Sass) or custom property (CSS)

✏ SIDE NOTE

Why the -- & var() syntax? Why not $ as in Sass or
Less?

Tab Atkins, author of W3C’s CSS Custom Properties: “If
we use $foo for variables, we’ll be unable to use it for
future ‘variable-like’ things.”

Please explain further…

✏ SIDE NOTE

“For example, if we do define an alternate form that are more
SASS-like (can be used anywhere, but are global; more
‘macros’ than ‘variables’) we’d have to use some other glyph
[besides $] for them [if we already used $]. That’s suboptimal.

More specifically, if we ever do some sort of ‘variables’ in
selectors, we must use a compact form like $foo or something.

…As another example, … a proper macro system for CSS; in
other words, exactly what SASS’s variables currently do. I
assert that we’d definitely want a nice short ‘$foo’ or similar
syntax for this as well.”

Like Sass, a custom property can derive its value from
another custom property

No math operators yet, though

Can’t use a variable as part of a value, so this is not allowed:

.foo {
 --gap: 20;
 margin-top: var(--gap)px;
}

calc() to the rescue!

.foo {
 --gap: 20;
 margin-top: calc(var(--gap) * 1px);
}

var() supports fallback values, in case a custom
property isn’t specified:

background-color: var(--main-color, yellow,
cornsilk);

font-family: var(--body-fonts, Helvetica,
Arial, sans-serif);

padding: var(--default-padding, 1rem 1.5rem);

Components can have fallbacks in case the component’s
container doesn’t specify a value

/* Component styles */
.component .alert {
 background-color: var(--bg-color, #ccc);
 color: var(--alert-color, red);
}

/* Page/App styles */
.component {
 --bg-color: #bbb;
 /* No --alert-color set, so red used by component */
}

✏ SIDE NOTE

CSS properties are not case sensitive, so font: & Font:
are the same

Custom properties are case-sensitive, so --foo: &
--Foo: are different

Advantages of CSS
Custom Properties

No pre-processor required, since support is built in

:root {
 --color: yellow;
}

aside {
 --color: orange;
}

aside > h2 {
 color: var(--color);
}

CSS custom variables scoping

💡PRO TIP

A lot of developers use :root for global variables & then
use scoped variables as needed

Why :root?

:root means your CSS can be used with SVG & XML

With Sass, the variables are static: you can’t change
values once the CSS has been rendered, or inside media
queries

With custom properties, when the values change (e.g.,
via media queries or JavaScript), the browser repaints

:root {
 --base-margin: 20px;
}

@media (max-width: 640px) {
 :root {--base-margin: 10px;}
}

div {
 margin: var(--base-margin);
}

Bonus: JavaScript can now change variables without
having to write to the style attribute on elements

In fact, while not valid as CSS, this is a valid custom
property that could be manipulated by JavaScript:

--foo: if(x > 5) this.width = 10;

💡PRO TIP

Custom properties can really be handy for i18n

:root,
:root:lang(en) {--external-link: "external
link";}

:root:lang(fr) {--external-link: "lien
externe";}

a[href^="http"]::after {
 content: " (" var(--external-link) ")"
}

--* – 16 31 *9.1 9.3 49 49

var() – 16 31 9.1 9.3 49 49

Works with ~94% of global browsers (July 2020)

Thank you!

scott@granneman.com
www.granneman.com
ChainsawOnATireSwing.com
@scottgranneman

jans@websanity.com
websanity.com

CSS Preprocessors
Extending CSS with Sass to Provide Extra Functionality

© 2016 R. Scott Granneman
Last updated 2020-07-13

You are free to use this work, with certain restrictions.
For full licensing information, please see the last slide/page.

R. Scott Granneman r Jans Carton

1.8

Changelog

2020-07-13 1.8: Added & as Sass Parent Selector to
Nesting, with examples & details; added Jans’
gulpfile.js; minor formatting; added section on Scope;
dumped darken & lighten functions, as they are unreliable;
minor fixes & corrections

2020-02-15 1.7: Completely re-did & expanded section on
custom properties & section introducing Sass; changed
SCSS to Sass where appropriate; added note re: using HSL
with Darken & Lighten Functions

Changelog

2018-06-22 1.6: Added VSCode under Tools; added
screenshots of Jans’ Bootstrap 3 breakpoints @mixin;
minor changes to Compound selectors; minor fixes

2018-01-31 1.5: Added Task Runners & CLI Task
Runners sections under Tools; moved CodeKit, Prepros,
& Koala into new GUI Task Runners section under
Tools; added example to Comments; TODO CSS
Variables; TODO Sass Variables Scope

Changelog

2018-01-30 1.4: Fixed minor formatting issues; better
examples for nesting to create compound selectors; minor
wording changes; added Autoprefixer section

2018-01-30 1.3: Improved Background section with better pre-
processor info; applied Granneman 1.4 theme; fixed formatting
issues; added Box Styling example to Mixins; added detail in
Nested Properties; touched up @import Directive & Comments;
changed Sass to SCSS where appropriate; added many
screenshots of CodeKit, Prepros, & Koala

Changelog

2017-10-19 1.2: Updated Markdown examples; removed Mou
& added MacDown; SCSS is winning; added Pro Tip re:
editing CSS

2017-01-31 1.1: Updated theme & fixed minor formatting
issues; added more examples & explanation to Mixins; added
@import; fleshed out Brackets config files a lot; updated
CodeKit home page image; added OS support info to Prepros

2016-01-19 1.0: Created slides

Licensing of this work

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

You are free to:

» Share — copy and redistribute the material in any medium or format
» Adapt — remix, transform, and build upon the material for any purpose, even commercially

Under the following terms:

Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use. Give credit to:

Scott Granneman • www.granneman.com • scott@granneman.com

Share Alike. If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

No additional restrictions. You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

Questions? Email scott@granneman.com

