
CSS Building Blocks
Selectors

© 2005 R. Scott Granneman
Last updated 2023-09-28

You are free to use this work, with certain restrictions.
For full licensing information, please see the last slide/page.

R. Scott Granneman r Jans Carton

2.4

Notes & URLs for this presentation can be found…

» underneath the link to this slide show on
granneman.com

» at granneman.com/downloads/web-dev//CSS-
Selectors.txt

http://granneman.com/downloads/web-dev/CSS-Selectors.txt
http://granneman.com/downloads/web-dev/CSS-Selectors.txt

To fully comprehend these slides, you should first
read & understand CSS Overview

» Slides: files.granneman.com/presentations/webdev/
CSS-Overview.pdf

» Notes: files.granneman.com/presentations/webdev/
CSS-Overview.txt

http://files.granneman.com/presentations/webdev/CSS-Overview.pdf
http://files.granneman.com/presentations/webdev/CSS-Overview.pdf
http://files.granneman.com/presentations/webdev/CSS-Overview.txt
http://files.granneman.com/presentations/webdev/CSS-Overview.txt

Basics

A CSS selector declares which DOM objects should
have particular styles applied to them

The browser’s rendering engine…
» looks through the CSS & HTML
» matches selectors to the appropriate DOM objects
» applies the CSS style to the rendered DOM objects

HTML CSS

<h1 align="center"></h1> h1 {text-align: center;}

Entire thing is an element Entire thing is a rule set

h1 is an tag name* h1 is a selector

align is an attribute text-align is a property

center is a value center is a value

align="center" is an
attribute-value pair

text-align: center is a
declaration

Everything inside { & } is a
declaration block

* But most people call it an element

How Many?

Selectors Level 9

W3C Recommendation

September 29, 2011

www.w3.org/TR/css3-selectors/

Selectors Level :

W3C Working Draft

November 21, 2018

www.w3.org/TR/selectors4/

CSS 1: 10 different selectors

CSS 2: 13

CSS 3: 21

CSS 4: 34 (as of July 2020)

78 in total

CSS 1

E, .class, #ID, E F, pseudo classes (:link, :visited, &
:active), pseudo-elements (::first-line & ::first-
letter), lists (.classA, .classB, .classC)

CSS 2

*, E[foo], E[foo="bar"], E[foo~="bar"], E[foo|
="en"], :first-child, :lang(fr), :active), :hover,
:focus, ::before, ::after, E > F, E + F

3

E[foo^="bar"], E[foo$="bar"], E[foo*="bar"],
:root, :nth-child(n), :nth-last-child(n), :nth-
of-type(n), :nth-last-of-type(n), :last-child,
:first-of-type, :last-of-type, :only-child,
:only-of-type, :empty, :target, :enabled,
:disabled, :checked, :indeterminate,
:not(s), E ~ F

4

[attribute='value' i], [attribute='value' s],
:blank, :nth-child(), :dir(ltr), :any-link,
:lang(en-*), :local-link, :is(s1, s2, …),
:where(s1, s2, …), :read-only, :read-write,
:not(s1, s2, …), :required, :optional,
:placeholder-shown, :indeterminate, :valid,
:invalid, :user-invalid, :has(), :scope, :in-range,
:out-of-range, :nth-col(n), :nth-last-col(n),
:current, :past, :future, :default, :focus-within,
:focus-visible, :target-within, E || F

Why so many? Why so specific?

Because they are all needed, at one time or another

You don’t need to memorize all of them — just be aware
of them

1. Simple selectors

» Universal
» Type
» Class
» ID
» Pseudo-classes
» Pseudo-elements
» Attribute

2. Compound selectors

3. Complex selectors
(using combinators)

» Descendant
» Child
» Adjacent sibling
» General sibling

4. Selector list

Simple
Selectors

All covered extensively in CSS Overview

Selector Notation Meaning Introduced

* Universal selector CSS 2

element Type selector CSS 1

.class Class CSS 1

#id ID CSS 1

Pseudo-Classes

:foo

indicates a pseudo-class, which is used to style an
element based on its current state

Examples:
» :hover (applies only when hovering over an element)
» :first-child
» :enabled

Location
Pseudo-Class Selectors

CSS 1, 3, 4

Hyperlink: :any-link

Link history: :link & :visited

Target: :target

Reference element: :scope

:any-link

Hyperlink pseudo-class that matches any element with
the href attribute (<a>, <area>, or <link>)

Basically, :any-link works exactly like the [href]
attribute selector (covered later)

CSS 4

:link
:visited

Link history pseudo-classes match unvisited & visited
links

By default, :link is blue & underlined, while :visited
is purple & underlined

CSS 1

Let’s review…

URL fragment

Name preceded by #, specifying internal location in the
current page targeted using the id attribute

Chapter 1
…
<h2 id="chapter-1">1: Moorings</h2>

:target

Identifies the destination (target) of a link that points to a
specific portion of a document via a page fragment
identifier

Identifies the destination that is targeted, not the link to
the target

Only works after the link is clicked & the element is
targeted, when the URL changes from https://hpl.com/
stories.html to https://hpl.com/stories.html#Dagon

CSS 3

Note CSS changes

When I click on this link…

…this ID/URL fragment is targeted

No page fragment

Page fragment

:scope

Reference element pseudo-class that matches any
element that is a :scope element, an element that is in a
specific region of the document tree that a developer
chooses

For now, :scope matches :root, which is the same as
<html> (wider scoping may come to CSS in the future!)

Lots more useful with JavaScript where you can define
scoped areas of a webpage

CSS 4

:any-link – 79 50 9 9 65 Y

:link 6 12 2 3.1 3.2 4 2.1

:visited 6 12 2 3.1 3.2 4 4.4

:target 9 12 2 3.1 3.2 4 2.1

:scope – 79 32 7 7 27 Y

User Action
Pseudo-Class Selectors

CSS 1, 2, 4

Pointer hover: :hover

Input focus: :focus

Activation: :active

Focus container: :focus-within

:hover

Pointer hover pseudo class matches an element that has

a pointer over it, so looks like !

Used with:

» Dropdown menus
» Image galleries
» Anything!

On touch screens, :hover doesn’t work*

CSS 2

* See compatibility chart for complications

:focus

Input focus pseudo class matches when element is
currently selected to receive input

» Mouse: object selected (<input> or <textarea>)
» Keyboard: tab to object (usually indicated via dotted

or solid outline)

Can only focus on interactive elements (how would
you focus on <p>?)

dotted

CSS 2

:active

Activation pseudo class matches when element is
currently being activated by the user

» Mouse: time between mouse press & release
» Keyboard: hold down Enter

Often used on <a> & <button>

CSS 1

"PRO TIP

:active is overridden by any subsequent link-related
pseudo-class (:link, :hover, or :visited)

To style links the way you probably want them, put
link-related rules in this order:

:link
:visited
:hover
:active

:focus-within

Focus container pseudo-class matches elements that
contain a focused element

CSS 4

Now tab to the text field or click in it…

Notice the border around everything
that could be selected by :focus-
within

Notice the entire fieldset changes!

:hover 7* 12* 2 3.1 7.1.2† 4 Y

:active 6 12 2 3.1 3.2 4 2.1

:focus 8 12 2 3.1 3.2 4 2.1

:focus-within – 79 52 10.1 10.3 60 Y

* Hovering over an element & then scrolling up or down without moving the pointer will leave it
in :hover state until the pointer is moved; still a problem as of Edge 83 in July 2020

† As of iOS Safari 7.1.2, tapping a clickable element that has hidden sub-elements that are
revealed on :hover causes it to enter :hover state, & it will remain in :hover until a 2nd click
activates it; Safari 13 changes this to briefly show the :hover state while the click action is
being resolved

Tree-Structural
Pseudo-Class Selectors

CSS 3

:root
 

:empty

:root

Matches the element that is the root of the document

In HTML, this is always <html>

CSS 3

Why does :root exist?

1
Remember, CSS can also be used with SVG & XML!

2
:root is equivalent to <html> in CSS, except that :root
has a higher specificity

:empty

Matches elements that have no children (children
means elements or text)

CSS 3

:empty matches <td></td> so you could apply styles to
an empty table cell

It also matches empty elements like , <input>, &
<hr>

:root 9 2 3.1 3.2 4 Y

:empty 9 2 3.1 3.2 4 2.1

Tree-Structural
Child-Indexed

Pseudo-Class Selectors

CSS 2, 3

:first-child
 

:last-child

:only-child

:nth-child(n)
 

:nth-last-child(n)

:first-child

Matches the element that is the Jst child of a parent

p:first-child means a first <p> of all parent elements,
not the first child of <p>

Read it as “all <p>’s that are the first child of a parent”

CSS 2

:last-child

Matches the element that is the last child of a parent

p:last-child means a last <p> of all parent elements,
not the last child of <p>

Read it as “all <p>’s that are the last child of a parent”

CSS 3

:only-child

Matches the element that is the only child of a parent

p:only-child means a <p> that is the only child of its
parent elements, not the only child of <p>

Read it as “all <p>’s that are the only child of a parent”

CSS 3

:nth-child(n)

Rendering engine counts all children of an element &
then matches based on the selector

n can be:

» a keyword (odd or even)
» a number (like 1)
» a simple formula (like 2n or 2n+1)

CSS 3

tr:nth-child(odd)

Matches the odd rows of a table

tr:nth-child(even)

Matches the even rows of a table

tr:nth-child(1)

Matches the Jst row of a table, same as the :first-
child selector

Also same as tr:nth-child(0n+1)

n starts with 0 & increments up by 1
If n=0, then 0×0+1=1, the 1st row
If n=1, then 0×1+1=1, the 1st row
If n=2, then 0×2+1=1, the 1st row
& so on

tr:nth-child(2n+1)

Matches the odd rows of a table

If n=0, then 2×0+1=1, the 1st row
If n=1, then 2×1+1=3, the 3rd row
If n=2, then 2×2+1=5, the 5th row

tr:nth-child(2n)

Matches the even rows of a table

If n=0, then 2×0=0, which is no row
If n=1, then 2×1=2, the 2nd row
If n=2, then 2×2=4, the 4th row

tr:nth-child(-n+3)

Matches the Jst 9 rows of a table

If n=0, then 0+3=3, the 3rd row
If n=1, then -1+3=2, the 2nd row
If n=2, then -2+3=1, the 1st row
If n=3, then -3+3=0, which is no row

Remember, the rendering engine counts all children of
an element

All children get assigned a number based on order

The selector has to match the element (if specified) &
the number based on order

:nth-last-child(n)

Rendering engine counts all children of an element
(children are counted starting with 1) & then matches
based on the selector, starting at the last element &
working backwards

n can be:

» a keyword (odd or even)
» a number (like 1)
» a simple formula (like 2n or 2n+1)

CSS 3

:first-child 7 12 3.1 4 4 Y

:last-child 9 1 3.2 3.2 1 2.1

:only-child 9 1.5 3.1 3.1 2 2.1

:nth-child(n) 9 3.5 3.1 3.1 1 2.1

:nth-last-child(n) 9 3.5 3.2 3.2 4 2.1

Tree-Structural
Typed Child-Indexed

Pseudo-Class Selectors

CSS 3

:nth-of-type(n)
 

:nth-last-of-type(n)

:first-of-type
 

:last-of-type
 

:only-of-type

:nth-of-type(n)

Similar to :nth-child(n), but it matches a specific
element, no matter where it is inside the parent

CSS 3

:nth-of-type(n) 9 3.5 3.1 3.1 1 2.1

:nth-last-of-type(n) 9 3.5 3.2 3.2 4 2.1

:first-of-type 9 3.5 3.2 3.2 1 2.1

:last-of-type 9 3.5 3.2 3.2 4 2.1

:only-of-type 9 3.5 3.2 3.2 1 2.1

Logical Combinations
Pseudo-Class Selectors

CSS 3

Matches-Any: :is()

Specificity-adjustment: :where()

Negation (Matches-None): :not()

Relational: :has()

:is(s1, s2, s3)

() contains a list of selectors, so :is() matches any
element that matches any one of the selectors in the list

Very useful for writing lots of selectors in a compact
way, without having to write out all the combinations
manually as separate selectors (yes, this is similar to
Sass nesting)

pseudo classes :visited and :link are not supported
inside :is() — Safari

✏ SIDE NOTE

:is() was formerly known as :matches() & :any()

:where()

What’s the difference between :is() & :where()?

:where() always has 0 specificity

:is() takes on the specificity of the most specific
selector in its arguments; e.g., :is(p,.foo,.bar.baz)
would take 2,0 as its specificity because .bar.baz is the
most specific

:not(s)

Negation (Matches-None) pseudo-class that matches
any element not represented by s

s is any selector that does not contain another negation
selector or any pseudo-elements

CSS 3

This is an academic, not
a real-world example!

✏ SIDE NOTE

Keep in mind that as of 2021-07-17, Safari does not
support pseudo classes :visited and :link inside
:not()

CSS Selectors Level 4 (still in Working Draft)
allows :not() to accept a list of selectors

Instead of :not(a):not(.b):not([c]) (which is valid!)
you can instead use :not(a, .b, [c])

Currently support is bad, however

:has()

✏ SIDE NOTE

Before :has() syntax was adopted, the previous syntax
was main a < img, but there a big problem: the key
selector — a — wasn’t on the right like every other key
selector was

The new syntax — main a:has(> img) — solved the
problem by conforming to the syntax of all other key
selectors, as now the whole thing is the a with a pseudo-
class as part of it

:is() – 88 78 14 14 88 88

:where() – 88 78 14 14 88 88

:not() 9 12 3.5 3.2 3.2 4 2.1

:not(s,s) – – – 9 9.2 – –

:has() – – – – – – –

As of 2021-06-17

CSS 4 introduces new time-dimensional pseudo-
classes

» :current
» :past
» :future

Not currently supported, but they will be covered as
they develop (if ever)

CSS 4 introduces new grid-structural pseudo-classes

» :column(selector)
» :nth-column(n) :nth-col(n)
» :nth-last-column(n) :nth-last-col(n)

Not currently supported, but they will be covered as
they develop (if ever)

Pseudo-Elements

:foo

indicates a pseudo-class, which is used to style an
element based on its current state

::foo

indicates a pseudo-element, which is used to style a
specific part of an element, e.g., ::first-line

Note how the Inspector
handles the pseudo-
element in Brave

To inspect pseudo-elements fully in Chromium-based
browsers, click on the cog in the upper right of the
Inspector to open Inspector Preferences

Scroll down to the Elements section

✓ Show User Agent Shadow DOM

In CSS 2, : was used for both pseudo-classes & pseudo-
elements

CSS 3 introduced :: for pseudo-elements while
leaving : for pseudo-classes

Most rendering engines support both, but you should
stick to :: for your pseudo-elements

::first-line

Pseudo-Element
Selector

CSS 1

::first-line

Selects Jst line of an element

You are limited as to the properties you can use — see
MDN for the complete list

::first-letter

Pseudo-Element
Selector

CSS 1

::first-letter

Selects Jst letter of the first line of text

Often used to create a “drop cap” effect

<string> Data Type

Data types specify which kinds of values are allowed for
CSS properties

<string>

Represents a quoted string of Unicode characters

Quotation marks can be either "foobar" or 'foobar'

Used with:
» data URIs
» ::before
» ::after

<string> <5 1 1 Y 1 Y

::before

Pseudo-Element
Selector

CSS 2

::before

Selects element & inserts content before it

Content can be text, images, or counters

Used to be :before, & most rendering engines support
both

Must include the content property!

We’ll improve this in Tables & Lists

Values for content:

» string: <string>
» image: <url> or <gradient>
» alt text: url("<url>") / "<string>"
» counter: <counter>()
» attribute value: attr()
» keywords: open-quote, close-quote, no-open-
quote, no-close-quote

» several values together: open-quote
chapter_counter

open-quote
close-quote

Replaced by the appropriate string from the quotes
property

Default depends on the language value currently set on
the selected elements

no-open-quote
no-close-quote

Doesn’t insert quotation marks; instead, increments or
decrements the level of nesting for quotes

::after

Pseudo-Element
Selector

CSS 2

::after

Selects element & inserts content after it

Content can be text, images, or counters

Used to be :after, & most rendering engines support
both

Must include the content property!

What about images?

Instead of images you can use Unicode

To insert Unicode in your CSS,
look up the UTF-8 code point
value (2708 for ✈) & enter that
in with \ (an escape) in front of
it

:before 8 1 1.3 3.2 4 2.1

::before 9 1.5 3.1 5.1 4 2.1

:after 8 1 1.3 3.2 4 2.1

::after 9 1.5 3.1 5.1 4 2.1

Increasingly, ::before & ::after are used to create
boxes that are used for layout

Bootstrap, for instance, uses this commonly

However, there are some limitations…

Block box created by <p>

Inline box created by ::before

Inline box created by ::after

Block box created by <p>

Inline box created by ::before

Inline box created by ::after

Boxes that cannot be created with CSS

You can combine pseudo-elements with the user action
pseudo-classes

However, order matters!

p::first-line:hover only matches if the 1st line is
hovered

p:hover::first-line matches the 1st line if any part
of the <p> is hovered

Attributes

CSS 2 & 3

Attribute selectors allow you to select a particular
element based on attribute conditions

Existence element[attribute] CSS 2

Equality element[attribute="value"] CSS 2

Space element[attribute~="value"] CSS 2

Hyphen element[attribute|="value"] CSS 2

Prefix element[attribute^="value"] CSS 3

Substring element[attribute*="value"] CSS 3

Suffix element[attribute$="value"] CSS 3

<h1 align="center"> … </h1>

h1 is an tag name (but most people call it an element)

align is an attribute

center is a value

align="center" is an attribute-value pair

[title]

Simple attribute selector: Does element foo have
attribute title?

It doesn’t matter what the value is, just that it has the
attribute

[title="Cthulhu"]

Attribute value selectors: Does element foo have the
attribute title with the exact attribute value Cthulhu
& only Cthulhu?

Exact value, so would not match Cthulhu!

What’s wrong with this selector?

Also useful when you want to override inline styles
injected by a JavaScript library, like this:

<h1 style="color:blue">

Grrr…$

[title~="R’lyeh"]

One-of-many (space-separated) attribute value
selectors: Does element foo have the attribute title
with a specific attribute value R’lyeh among a list of
space separated values?

Space-separated, so R’lyeh matches Cthulhu R’lyeh &
R’lyeh Cthulhu, but not Cthulhu/R’lyeh

Jans messaged me one night at 11:34 PM:

I just used this selector…

[class]:not([class~="m-1v1"])

What is it selecting?

[src|="headshot"]

Hyphen-separated attribute value selectors: Does
element foo have the attribute src with a specific
attribute value headshot among a list of hyphen
separated values?

Hyphen-separated, so headshot matches cthulhu-
headshot but not Cthulhu headshot

Mostly used with languages (e.g., en-US, en-UK)

Can also be used with images, which often use hyphens
in file names (e.g., headshot-jones.jpg, headshot-
smith.jpg)

CSS 3 introduces 3 new
ways to select a
particular element based
on attribute conditions

If you know regular
expressions (regex), you
should recognize these

"PRO TIP

What is regex?

Normal find & replace looks for a literal string of
characters, & if found, replaces it; e.g.:

Find cthulhu@lovecraft.com

Replace with hpl@lovecraft.com

"PRO TIP

Regex, on the other hand, matches patterns

Find all misspellings of Jans’ name: [HJY][aeo]n+[sz]

"PRO TIP

[HJY][aeo]n+[sz]

» [HJY]: matches 1 H, J, or Y
» [aeo]: matches 1 a, e, or o
» n+: matches 1 or more ns
» [sz]: matches 1 s or z

Will match Hans, Jenz, Jonnz, Yans…

"PRO TIP

Multiple spellings of the Jewish holiday: Chanuka,
Chanukah, Chanukkah, Channukah, Hanukah,
Hannukah, Hanukkah, Hanuka, Hanukka, Hanaka,
Haneka, Hanika, Khanukkah

Find all spellings: [CHK]h?ann?[aeiu]kk?ah?

"PRO TIP

[CHK]h?ann?[aeiu]kk?ah?

» [CHK]: matches 1 C, H, or K
» h?: matches 0 or 1 h
» ann?: look for a followed by n followed by 0 or 1 n
» [aeoi]: matches 1 a, e, i, or u
» kk?: matches k followed by 0 or 1 k
» ah?: matches a followed by 0 or 1 h

Matches Chanuka, Chanukah, Chanukkah, Channukah,
Hanukah, Hannukah, Hanukkah, Hanuka, Hanukka,
Hanaka, Haneka, Hanika, Khanukkah

"PRO TIP

Multiple spellings of the former Libyan leader’s name:
Gadaffi, Gadafi, Gadafy, Gaddafi, Gaddafy, Gaddhafi,
Gadhafi, Gathafi, Ghadaffi, Ghadafi, Ghaddafi,
Ghaddafy, Gheddafi, Kadaffi, Kadafi, Kaddafi, Kadhafi,
Kazzafi, Khadaffy, Khadafy, Khaddafi, Qadafi, Qaddafi,
Qadhafi, Qadhdhafi, Qadthafi, Qathafi, Quathafi,
Qudhafi, Kad'afi

Find all spellings: (Kh?|Gh?|Qu?)[aeu](d['dt]?|t|
zz|dhd)h?aff?[iy]

"PRO TIP

(Kh?|Gh?|Qu?)[aeu](d['dt]?|t|zz|dhd)h?aff?
[iy]

» (Kh?|Gh?|Qu?): Look for K followed by 0 or 1 h OR G
followed by 0 or 1 h OR Q followed by 0 or 1 u

» [aeu]: look for an a, e, or u
» (d['dt]?|t|zz|dhd): look for a d followed by 0 or 1
', d, or t OR a t OR zz OR dhd

» h?: look for 0 or 1 h
» aff?: look for a followed by f followed by 0 or 1 f
» [iy]: look for an i or a y

"PRO TIP

Find all email addresses: [a-zA-Z0-9_]+(?:\.[A-Za-
z0-9!#$%&'*+/=?^_`{|}~-]+)*@(?!([a-zA-Z0-9]*\.
[a-zA-Z0-9]*\.[a-zA-Z0-9]*\.))(?:[A-Za-z0-9]
(?:[a-zA-Z0-9-]*[A-Za-z0-9])?\.)+[a-zA-Z0-9]
(?:[a-zA-Z0-9-]*[a-zA-Z0-9])?

"PRO TIP

Books to get

RegEx you need to know in order to understand these
selectors

^ matches start of string or start of line; e.g., ^Young would
match Young Americans but not All the Young Dudes

$ matches end of string or end of line; e.g., Rock$ would
match Black Country Rock but not Rock ’n’ Roll
Suicide

* matches zero or more characters; e.g., rr* would match
Lodger & Heroes & Subterraneans

[title^="Cthulhu"]

Begins with attribute value selectors: Does element foo
have the attribute title with the specific text Cthulhu
at the beginning of the title value?

Starts with, so Cthulhu matches Cthulhu R’lyeh, but
not R’lyeh Cthulhu

[title$="fhtagn"]

Ends with attribute value selectors: Does element foo
have the attribute title with the specific text fhtagn at
the end of the title value?

Ends with, so fhtagn matches R’lyeh fhtagn but not
R’lyeh fhtagn!

[title*="cthulhu"]

Substring match attribute value selectors: Does
element foo have the attribute title with the specific
text cthulhu somewhere in the title value?

Substring, so mad matches madness & armadillo &
nomad

Chain ’em together!

HTML
<div style="color:red; margin-left:40px;">
 Attention!
</div>

CSS
div[style*="color:red"][style*="-left:40px"]{  
 margin-right: 40px;  
}

By default, all attribute selectors are case-sensitive

» [title] ≠
» [title="cthulhu"] ≠
» [title$="fhtagn"] ≠
» [title*="cthulhu"] ≠ <a tItLe="Me
Chtulhuizing my hoodie">

[title*="Cthulhu" i]

Adding i to the end of any attribute selector makes the
match case-insensitive, so Cthluhu matches Cthulhu &
cthulhu & CtHuLhU

[attr],
[attr="value"],

[attr~="value"],
[attr|="value"],

7 12 2 3.1 3.2 4 2.1

[attr^="value"],
[attr$="value"],
[attr*="value"],

7 12 3.5 3.2 3.2 4 2.1

i – 79 47 9 9.2 49 69

Compound
Selectors

CSS 1→4

A compound selector consists of a chain of simple
selectors connected together that describes multiple
conditions on an element

Not connected by a combinator (which is coming up
next)

table.inventory matches
<table class="inventory">

table.inventory.northwest matches
<table class="inventory northwest">

.cthulhu:first-child matches the first
<element class="cthulhu">

In CSS Overview, we said that these are all simple
selectors

*
element
.class
#id
::pseudo-classes
::pseudo-elements
[attribute]

This is true, but not the whole story

Technically, most of the simple selectors are also
compound because you can put * in front of them

*
element

.class
#id
:pseudo-class
::pseudo-element
[attribute]

Simple Compound

element.class
element[attribute]

Complex
Selectors Using

Combinators

A complex selector uses a combinator to express a
relationship between selectors

Combinator Name Ex. Which B is selected?

␣ (space) Descendant A B Any descendant of A

> Child A > B Direct children of A

+ Next Sibling A + B Next sibling after A

~ (tilde) Subsequent
Sibling

A ~ B All siblings after A

Descendent
Combinator

CSS 1

selectorA selectorB

Selects any selectorB who has selectorA as an
ancestor

selectorB can be a child, grandchild, or later
descendant of selectorA

Any other selectorB is unaffected

SIDE NOTE

Used to be called Contextual Selector before W3C
renamed it to Descendant Combinator

Child Combinator

CSS 2

selectorA > selectorB

Selects any selectorB who is a direct child of selectorA,
not a grandchild or any other descendants

All siblings who are direct children of selectorA are
selected

Siblings: 2 or more elements that share a parent

Contrasts with the descendant combinator, which selects
both direct children & any descendants, no matter how deep

Next-Sibling
(aka Adjacent Sibling)

Combinator

CSS 2

selectorA + selectorB

Selects any selectorB who is an immediately following
(next) sibling of selectorA

2nd element is selected, not both (remember key
selectors?)

Elements must be listed in the order in which they
appear in HTML

Subsequent-Sibling
(aka General Sibling)

Combinator

CSS 3

selectorA ~ selectorB

Selects selectorB only if preceded by selectorA, &
both selectorA & selectorB share a common parent

selectorA & selectorB do not have to be adjacent
siblings

If the Adjacent Sibling Combinator should really be

called the Next Sibling Combinator, then the General

Sibling Combinator should really be called the All

Following Siblings Combinator

Selector Lists

CSS 1

selectorA, selectorB, selectorC

List selectors that have similar declarations for simpler
& cleaner CSS & HTML

⚠ Warning! ⚠

If there is an invalid pseudo-element or pseudo-class in
the list of selectors, the entire selector list will fail!

.cthulhu, .azathoth, .hastur:nope {
 background-color: dodgerblue;
 border: 1px solid darkblue;
}

&'(

&

If a pseudo-element has a -webkit- prefix, newer

browsers assume it’s) & do not invalidate the selector

list

This only applies to pseudo-elements, not pseudo-
classes!

“A way to remedy [the invalid selector problem is] to
use the :is() or :where() selectors, which accept a
forgiving selector list. This will ignore invalid selectors
in the list but accept those which are valid.” —MDN

:is(.cthulhu, .azathoth, .hastur:nope) {
 background-color: dodgerblue;
 border: 1px solid darkblue;
}

:where(.cthulhu, .azathoth, .hastur:nope) {
 background-color: dodgerblue;
 border: 1px solid darkblue;
}

*)
&

&
*)

:is() – 88 82 – – 88 88

:where() – 88 82 – – 88 88

Support here is only for forgiving wrong selectors in a selector list, not for the selector itself;
data good as of 2021-06-16

Jans’ 3
Wishes

Parents

There are no selectors to identify parents

As a result, always put your classes & IDs on the
outermost element

 Foo
 Bar

Where would you put a class for foo & bar that best
gives you most CSS flexibility later?

<ul class="social-media">
 Foo
 Bar

Where would you put a class for foo & bar that best
gives you most CSS flexibility later?

✏ SIDE NOTE

Selectors Level 4 (Working Draft dated November
2018) introduces the Relational pseudo-class :has()

a:has(> img) would match <a> elements that contain
 as a direct child

Previous Siblings

You can select next (Adjacent) or any following
(General) siblings, but you cannot select previous
siblings

✏ SIDE NOTE

Selectors Level 4 (Working Draft dated November
2018) introduces the Relational pseudo-class :has()

a:has(+ img) would match <a> elements that are
immediately followed by as a sibling

CSS-Generated
Wrappers

Remember this diagram when we discussed ::before
& ::after?

Block box created by <p>

Inline box created by ::before

Inline box created by ::after

Boxes that cannot be created with CSS

::before & ::after create a box inside the selected
element, but there’s no way to draw a box outside the
selected element

::outside was around for a while in a spec, but died

Jans would also love an ::inside as well!

The solution in 2020 is custom elements, which are
covered in our Web Components presentation

Build your custom element (e.g., <fancy-frame>) so it
has image-based tiling borders & special corners

Thank you!

scott@granneman.com
www.granneman.com
ChainsawOnATireSwing.com
@scottgranneman

jans@websanity.com
websanity.com

CSS Building Blocks
Selectors

© 2005 R. Scott Granneman
Last updated 2023-09-28

You are free to use this work, with certain restrictions.
For full licensing information, please see the last slide/page.

R. Scott Granneman r Jans Carton

2.4

Changelog

2023-09-28 2.4: Actually, :has() is not in danger & has
wide support!

2021-06-16 2.3: Added slides listing all pseudo-
elements; updated new CSS4 combinators; more info
re: hazardous state of :has(); added screenshot
for :is(); better screenshot for :not(); added slide
with :not([class~="m-1v1"]) in Attributes

Changelog

2020-12-25 2.2: Updated screenshots for User Action
Pseudo-Class Selectors; improved wording for :not(s);
updated Compound Selectors to be more accurate;
added section in Selector Lists about invalid selectors
causing the entire list to fail; changed section name to
Complex Selectors Using Combinators & improved
combinator chart; added custom elements as solution
in CSS-Generated Wrappers

Changelog

2020-07-24 2.1: Minor fixes; changed descriptions for
pseudo-classes & pseudo-elements; added screenshot
for pseudo-elements; Lovecraft-ized explanation
of :target; fixed :hover for Safari/iOS & added note
for Edge bug with :hover in compatibility chart;
updated screenshot for Tree-Structural Child-Indexed
Pseudo-Class Selectors; added note to 1st :not()
example; corrected number & list of CSS 4 selectors in
How Many?

Changelog

2020-07-14 2.0: (con’t. from ↓) better examples/

screenshots for :not; added list of values for content
under ::before & added examples for open-quote &
no-open-quote; added examples of regex in Attributes;
updated compatibility charts in Pseudo-Classes;
updated slides for attribute selectors; so many changes
I bumped it up to 2.0!

Changelog

2020-07-14 2.0: Updated Jans’ 3 Wishes; updated HTML/
CSS vocabulary table; provided descriptive names for all
pseudo-classes; moved :target into Location &
added :any-link & :scope; added :focus-within to User
Action; under Logical Combinations we now
have :is(), :not(), :where(), & :has(); moved :enabled
& :disabled into new Input Control States section in
Forms; moved :checked into new Input Value States in
Forms; moved :valid & :invalid into new Input Value-
Checking section in Forms; (con’t. ↑)

Changelog

2019-08-23 1.17: Added boxed drop cap in ::first-
letter; updated compatibility chart for case-insen-
sitive attribute selectors; updated regex examples with
rr*

2018-12-02 1.16: CSS 1 & 2 both support :hover,
not :active; un-bolded regex Bowie songs that don’t
match since that’s clearer

Changelog

2018-11-06 1.15: Updated icons & column order in
compatibility table

2018-10-01 1.14: Added Can I Use screenshot for :has;
added full list of selectors level 4; added slides listing
selectors for 1, 2, 3, & 4; better example for
:empty; clarified :disabled; updated chart for
:fullscreen & ::backdrop; added chart on case
insensitive attribute selectors (i); updated theme to
Granneman 1.5; minor fixes

Changelog

2018-02-05 1.13: Switched theme to Granneman 1.4; fixed
formatting errors; added :fullscreen & ::backdrop

2017-10-22 1.12 (con’t ↓): added better example for

attribute value selector & made old example a bad
example; provided full list of selectors at beginning;
content property is required for ::before & ::after;
improved intro to attribute selectors; added :not can
accept list of selectors

Changelog

2017-10-22 1.12: Added slide explaining why so many
selectors; moved pseudo-classes, pseudo-elements, &
attributes under Simple; hid simple selectors details
covered in CSS Overview; simplified organization of
selectors; renamed Combinators to Complex Selectors
with Combinators; added note re: requiring CSS
Overview; indicated that Child-Indexed & Typed Child-
Indexed are both Tree Structural; better example for
Typed Child-Indexed; (con’t ↑)

Changelog

2016-09-23 1.10: Added another example of :not()
pseudo-class selector; changed theme to Granneman
1.2; fixed formatting caused by changing theme; added
info re: key selectors & speed; changed title from Basic
Selectors to Common Selectors; added arrows to IDs as
JavaScript hooks; created Combinator table; minor
wording changes; reference combinators are dead;
added xkcd regex cartoon; Bowie-ized regex Attribute
Selectors

Changelog

2016-02-01 1.9: Switched to Georgia Pro theme & fixed
resulting issues; added slides on :focus & :active;
removed old & added new & better example
for :target; updated Selectors Level 4 as still in
Editor’s Draft; added slide re: combining pseudo-
classes & pseudo-elements; added detail re: ::outside

Changelog

2016-01-20 1.8: Added slide re: regex to explain regex-
based attribute selectors; reorganized list of
combinators; IDs can be used for JavaScript too; added
picture of ID used for ToC; indicated earlier that
adjacent sibling should be thought of as next sibling

Changelog

2016-01-10 1.7: Fixed formatting of lists of selectors;
got rid of E & F in selectors & made them clearer;
changed .bigRed to .big-red; clarified source of class
& ID names; made number of selectors clearer;
redefined selector; added slides on multiple class
selectors; added slide re: IDs as URL fragment
identifiers; added another example of Child Combinator

Changelog

2015-05-14 1.6: Better explained the adjacent sibling
combinator & added note; added CSS 4 selectors that
will be discussed in the future; added using layout
via ::before & ::after; fixed unclear key selector;
fixed slide about overcoming inline styles with attribute
selector

Changelog

2015-05-02 1.5: Added details about :empty; fixed
counters() screenshot; moved slide explaining
combinators; corrected number of selectors in CSS; added
slides on CSS 4 selectors

2014-09-27 1.4: Changed “browser” to “rendering engine”
in several places

2014-08-12 1.3: Improved Descendant Combinator
section

Changelog

2014-08-06 1.2: Added definition of data type; clarified
Adjacent Sibling & General Sibling combinators; added
If Jans Had 3 Wishes section

2014-05-19 1.1.2: Added attribute selectors

2014-05-18 1.1.1: Added “Legal Numbering Using
HTML Heading Levels” to ::before

TODO

Add ex’s for :checked, :fullscreen, & ::backdrop;

Licensing of this work

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

You are free to:

» Share — copy and redistribute the material in any medium or format
» Adapt — remix, transform, and build upon the material for any purpose, even commercially

Under the following terms:

Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use. Give credit to:

Scott Granneman • www.granneman.com • scott@granneman.com

Share Alike. If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

No additional restrictions. You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

Questions? Email scott@granneman.com

