
Webpage Layouts
5 Methods r More

R. Scott Granneman r Jans Carton

© 2013 R. Scott Granneman • v1.9 2025-04-08 • Licensed CC BY-SA 4.0

Notes & URLs for this presentation can be found…

» underneath the link to this slide show on
granneman.com

» at granneman.com/downloads/web-dev/Layout-
Methods.txt

http://granneman.com/downloads/web-dev/Layout-Methods.txt
http://granneman.com/downloads/web-dev/Layout-Methods.txt

When Tim Berners-Lee created the World Wide Web,
he was focused almost entirely on documents

1st website, last updated November 1992

Once the Web started to become more widespread,
people wanted to lay out pages in columns … & more!

5 methods for laying out webpages

1. <table>
2. float
3. display: table-cell  

4. display: flex
5. display: grid

Not meant for page layout

Meant for page layout

<table>

What’s a table for?

Two-dimensional data

Not for page layout… however, that’s all we had in the
’90s

This is a legit use of a table

This is not a legit use for a table … but it’s what we had

Basic Tables

<table>

Creates table box

Useless by itself

By default, <table>s fit themselves to their content

Required descendant: <tr>

Optional children: <caption>, <colgroup>, <thead>,
<tbody>, <tfoot>

<tr>

Creates table row of cells

Creates table-row box

Children must be <th> or <td>

<th>

Table header for a group of cells below or to side

By default, browsers do the following to text:

» bold
» horizontally (row) or vertically (column) center

<td>

Table data cell

By default, <td>s fit themselves to their content

Creating Tables

Creating tables by hand is tedious & error-prone

Be lazy! There are easy ways to generate the initial
<table> code

www.tablesgenerator.com/html_tables

We don’t need all that CSS!

Responsive table

Table sorting enabled

Keep header visible

Table sorting enabled
& keep header visible

✏ SIDE NOTE

“…a comma-separated values (CSV) file stores tabular
data (numbers & text) in plain text. Each line of the file
is a data record. Each record consists of one or more
fields, separated by commas. … CSV is a common data
exchange format that is widely supported… Among its
most common uses is moving tabular data between
programs…” —Wikipedia

✏ SIDE NOTE

Writer,Creation,Publisher

Lovecraft,Cthulhu,"Weird Tales"

Burroughs,"Tarzan of the Apes","All-Story"

Dent,"Doc Savage","Doc Savage Magazine"

Haggard,"Allan Quatermain",Novel

Wells,"The Time Traveler","The New Review"

Howard,"Conan the Barbarian","Weird Tales"

Sample CSV file

✏ SIDE NOTE

Import CSV into Excel

✏ SIDE NOTE

✏ SIDE NOTE

Export CSV from Excel

Why did the Web developer leave the restaurant?

Why did the Web developer leave the restaurant?

Because of the table layout!

float

The flow is the interaction of 3 layout behaviors:

» Block layout is vertically adjacent
» Inline layout is horizontally wrapping
» Floated boxes are moved to one side & following

content flows around it

Block layout means that boxes are vertically adjacent

Inline layout means that boxes horizontally wrap to new lines
when they cannot fit

Floated boxes are moved to one side & content flows around it

float

Element taken out of normal flow & placed along left or
right side of its container, where text & inline elements
will wrap around it

Floated elements must have a width, either explicit
(using width) or implicit (image)

float: left

Element floats on left side of containing block

float: right

Element floats on right side of containing block

What happens when you float a box against another
floated box?

No float!

Float!

What happens when you float a box against another
floated box, & there’s not enough room?

clear

Specifies that the element should not float or wrap, but
should instead move down below the float

clear: left

Element moves down to clear past left floats

clear: right

Element moves down to clear past right floats

clear: both

Element moves down to clear past left & right floats

What if we want blue, red, & green
to line up like they are now, but on
the right side of the viewport?

float 4 1 1 1 1 1

clear 4 1 1 1 1 1

Why did the Web developer drown?

Why did the Web developer drown?

She didn’t know if she should float: left or float:
right!

display:

table-cell

display

Specifies type of rendering box used for element

» block
» inline, inline-block, inline-table
» table, table-row, & table-cell
» list-item
» flex

» grid
» none

display: block

Generates block boxes that line up vertically, relative to
parents & siblings

display: inline

Generates inline boxes that break horizontally across
lines when they are too wide to fit their containers

Content determines width

border on all 4 sides, but margin & padding only work
on left & right

Initial value for all boxes

display: none

Removes element from flow & hides it as though it did
not exist

Also removes all descendants

(Unlike visibility: hidden, which hides the element
but leaves it in flow as though it were still there)

display: table

Generates box that behaves like a <table>

» Content determines width
» Box lines up vertically, relative to parents & siblings
» Can set margin, padding, & border

display: table-row

Generates box that behaves like <tr>

» No margin, padding, or border
» Content determines width

You will never use this

display: table-cell

Generates box that behaves like <td>

» Content determines width
» No margin
» Lines up horizontally with other <td>s in a row

It’s not OK to use <table> for layout

It worked to use display: table & display: table-
cell for layout when it made sense (but now we have
flexbox & grid so we don’t need to!)

display: flex

Flex Container

Flex Items

Cross Axis: perpendicular
to the main axis

Main Axis: primary axis on which flex
items are laid out (↔ or ↕)

Main Start Main End

Cross Start

Cross End

On the following slides, you’ll see these symbols

Flex container

Flex items

Main axis

Cross axis

What triggers
the flexbox layout

algorithm?

display: flex

Generates a block-like box that behaves according to
the flexbox model:

» Becomes a flex container that lines up vertically,
relative to parents & siblings

» Immediate children become flex items
» Changes the layout mode inside it

display:

flex 11 12 28 9 29 9.2 4.4

What direction
& in what order
do flex items go?

flex-direction

Specifies how flex items are laid out in the flex
container by setting…

» the main axis: ↔ ↕
» the direction of the flow along the main axis

flex-direction

Values:
» row (default) →
» row-reverse ←
» column ↓
» column-reverse ↑

flex-direction: row

Flex items are stacked in a row from left-to-right

(If the default for your locale is direction: rtl, then
it’s the opposite)

flex-direction: row-reverse

Flex items are stacked in a row from right-to-left

(If the default for your locale is direction: rtl, then
it’s the opposite)

flex-direction: column

Flex items are stacked in a column from top-to-bottom

flex-direction: column-reverse

Flex items are stacked in a column from bottom-to-top

You can apply display: flex on flex items

Add flex-direction to the mix & you can really have
something

Let’s make that responsive

flex-direction 11 12 22 9 21 9.2 4.4

How do you distribute
flex items

in the container?

justify-content

Defines how space is distributed between & around
flex items along the main axis of their container

Values:
» flex-start (default)
» flex-end
» center
» space-between
» space-around

justify-content: flex-start

Aligns flex items to the left side of the flex container,
going left-to-right

Default value for justify-content

justify-content: flex-end

Aligns flex items to the right side of the flex container,
still going left-to-right

justify-content: center

Aligns flex items at the center of the flex container,
going left-to-right

justify-content: space-between

Flex items have equal spacing between them, with first
& last flex items aligned to edges of the flex container

No space before first flex
item (or after last flex
item), but equal space
between flex items

justify-content: space-around

Flex items have equal spacing around them, with first
& last flex items getting half-sized spaces on the ends

Empty space before the first, and after the last, flex
items equals half of the space between two adjacent
items

Space before 1st flex
item (& after last flex
item) is 1/2 of space
between flex items

justify-content 11 12 29 9 29 9.2 4.4

How are flex items
aligned

in the container?

align-items

Aligns flex items in the cross axis of the current flex
line

Values:
» stretch (default)
» flex-start
» flex-end
» center
» baseline

align-items: stretch

Flex items fill the whole height (or width) from cross
start to cross end of the flex container

Obviously the flex item cannot have a set height

Default value for align-items

align-items: flex-start

Flex items stack from the cross start of the flex
container

align-items: flex-end

Flex items stack from the cross end of the flex container

align-items: center

Flex items stack from the center of the cross axis of the
flex container

align-items: baseline

Flex items stack so that the baselines are aligned inside
the flex container

align-items 11 12 28 9 29 9.2 4.4

How big should
each flex item be?

flex-grow

Specifies if a flex item can grow if necessary to take
up available space inside the flex container, based on
proportion

Value: <number>
» No negative numbers
» Default is 0: do not grow

CSS Tricks (a fantastic site) says this about flex-grow:

“If all items have flex-grow set to 1, every child will set
to an equal size inside the container. If you were to
give one of the children a value of 2, that child would
take up twice as much space as the others.”

This is wrong! The number doesn’t determine the size
of the flex items; it determines what proportion of the
available space the flex item can take if it grows

A value of 0 means that
none of the flex items grow,
& the width of 90px is used
(the measurement above
says 180px because my Mac
has a Retina screen, so 1
CSS pixel = 2 device pixels)

The flex container is 1152
pixels wide

There are 210 pixels of
unused space inside the
1152-pixel wide flex
container

4 flex items with a value of 0
do not grow, but the flex
item with a value of 1 grows
to take all of the unused
space (180+210=390)

Flex items with a value of 0
use the width of 90px, but
the flex item with a value of
1 ignores it

4 flex items with a value of 1
grow (180+35=215)

Flex items with a value of 1
ignore the width of 90px

4 flex items with a value of 1
grew by 35px, while the flex
item with a value of 2 grows
by 70px (180+70=250), 2×
the proportion of the others

Flex items with a value
different from 0 ignore the
width of 90px

flex-shrink

Specifies if a flex item can shrink if necessary to take
up available negative space inside the flex container

Value: <number>
» No negative numbers
» Default is 1, so all flex items can be shrunk
» 0 means do not shrink & maintain original size

Text & flex-shrink

152×5=760

What about the other 40?

Borders!

4+8+8+8+8+4=40

760+40=800

Images & flex-shrink

Note that…

» the default for flex-grow is 0: do not grow
» the default for flex-shrink is 1: shrink if necessary

flex-grow 11 12 28 9 29 9.2 4.4

flex-shrink 11 12 28 9 29 9.2 4.4

What if you have
more flex items

than will fit
in the container?

flex-wrap

Specifies if flex container lays out flex items in single
or multiple lines, & the direction new lines are
stacked in

Only applies if the flex container is too small to
contain the flex items

flex-wrap

Values:
» nowrap (default)
» wrap
» wrap-reverse

flex-wrap: nowrap

Flex items are displayed in one row & they are shrunk
to fit the width of the flex container

These are not 90px wide

flex-wrap: wrap

Flex items are displayed in multiple rows, from left-to-
right and top-to-bottom

These are 90px wide

flex-wrap: wrap-reverse

Flex items are displayed in multiple rows, from left-to-
right but from bottom-to-top

align-content

Aligns multiple lines of flex items within the flex
container when there is extra space in the cross axis

Similar to how justify-content aligns individual
items within the main axis

align-content

Values:
» stretch (default)
» flex-start
» flex-end
» center
» space-between
» space-around

What to do about this
extra space?

align-content only effects layout when there are
multiple lines of flex items inside the flex container

If there is only a single line of flex items, align-
content has no effect on the layout

align-content: stretch

Flex items display with distributed space after every
row of flex items

Default for align-content

align-content: flex-start

Flex items begin at the cross start of the flex container

align-content: flex-end

Flex items are stacked at the cross end of the flex
container, but not starting there

align-content: center

Flex items are stacked in the center of the cross axis of
the flex container

align-content: space-between

Rows of flex items have equal spacing between them,
with first & last rows aligned to the top & bottom edges
of the flex container

No space after last row (or
before 1st row), but equal
space between rows

align-content: space-around

Rows of flex items have equal spacing around them,
even the first & last row

Empty space before the first row, and after the last row,
equals half of the space between two adjacent rows

Similar to justify-content: space-around, but
focuses on rows instead of flex items

Space after last row (&
before 1st row) is 1/2 of
space between rows

display: grid

Flexbox is for distributing elements across an area by
assigning a direction & then following from there

Grid assigns objects within a flexible, defined
intersecting set of horizontal & vertical lines in both
directions

❶ ❷ ❸ ❹ ❺ ❻ ❼

❽ ❾ ❿

Flexbox

❶
❹

❷

❸ ❺

Grid

As of October 2018

Concepts & Terms

With tables, Flexbox you can visualize the layout itself
via the HTML

Grid, however, defines all layout in the CSS
Dev tools allow you to inspect something besides DOM
items — layout structures instead

Grid is about using CSS to define layout scaffolding &
then placing rendered boxes onto that scaffolding

Grid container defines the grid structure

Grid is composed of lines, cells, areas, tracks

Grid items are placed into areas

Grid gutters are thick lines between tracks

Grid container
» creates a grid layout context
» can be bigger (or smaller) than the

grid itself

Grid lines divide the grid, & they are

key to understanding grid layout

This grid has 8 lines

Grid lines are numbered

Space between 4 adjacent grid lines

defines a grid cell

This grid has 9 cells

Grid area is defined by 4 (not
necessarily adjacent) grid lines

Grid area is surrounded by 4 grid
lines around any number of cells

A cell is an area, but not all areas are
cells!

How many areas are in this grid?

How many areas are in this grid?

36!

Space between 2 adjacent grid lines

defines grid tracks of columns or

rows

A column track

How many total tracks are in this

grid?

A column track

How many total tracks are in this

grid?

6!

Grid items are placed into grid

areas based on grid lines — in this

case, an area equal to 1 cell

Grid items are placed into areas

that can span more than 1 cell

All direct children of grid container

are grid items*

* With a few exceptions

This grid has 9 cells but only 1 item

Cells are not part of the DOM so

you cannot select them with CSS

Grid item between:

» row lines 1 & 2, & column lines

1 & 2

» row lines -3 & -4, & column

lines -3 & -4

» any others?

Grid item between:

» row lines 3 & 4, & column lines

2 & 3

» row lines -1 & -2, & column

lines -2 & -3

» any others?

Grid gutters are basically thick lines
creating space between tracks

Your First Grid

display: grid

grid-template-columns

grid-template-rows

grid-gap

grid-row-start

grid-row-end

grid-column-start

grid-column-end

Create a grid layout context
with display: grid

Nothing to see because we
triggered the grid layout but
haven’t yet built a grid 1

Build the grid with tracks using
grid-template-columns &
grid-template-rows

Now we see the grid container
because there’s a grid inside it 2

Add space between tracks using
grid-gap

Note the grid is now 340×340 3

Add grid items, which are placed

automatically by default 4

Place grid items using line numbers

5

Tracks

Track Sizing

Various ways to size row & column tracks

» <length>
» <flex> fr unit
» max-content
» min-content
» fit-content()
» minmax()
» <percentage>

<length> data type; e.g.:

» 10px
» 10em
» 10rem
» 10vh

More in CSS Typography & CSS Data Types

fr

Grid introduces a new unit: fr, short for fraction of the
free space in the grid container

fr is calculated after any non-flexible items

grid-template-columns: 200px 1fr 200px;

grid-template-rows: 1fr 2fr 1fr;

1fr 1fr1fr

1fr 2fr 1fr

100
px 1fr1fr

Track sizing playground

codepen.io/websanity/
pen/oQLoBL

http://codepen.io/websanity/pen/oQLoBL
http://codepen.io/websanity/pen/oQLoBL

fr 10
-ms-

*16 52 10.1 10.3 57 57

max-content 10
-ms-

16 52 10.1 10.3 57 57

min-content 10
-ms-

16 52 10.1 10.3 57 57

fit-content() 10
-ms-

16 51 10.1 10.3 29 57

minmax() ? 12 52 10.1 10.3 57 –

Thank you!

scott@granneman.com
www.granneman.com
@scottgranneman@mastodon.social

jans@websanity.com
websanity.com

Webpage Layouts
5 Methods r More

R. Scott Granneman r Jans Carton

© 2013 R. Scott Granneman • v1.9 2025-04-08 • Licensed CC BY-SA 4.0

Changelog

2025-04-08 1.9: Updated Tables Generator screenshot
& added citations

2024-11-06 1.8: Updated theme to Granneman 1.13;
minor fixes & updates

Changelog

2023-08-02 1.7: Changed wording on display: table-
cell to say we don’t need it any longer; made list of
display values shorter; changed Twitter link to Mastodon

2018-12-02 1.6: Fixed screenshots of flex inside flex;
added screenshot showing how to create table at
TablesGenerator & reorganized; added table layout joke;
inline is the initial value for all boxes, not the default
value;

Changelog

!"#$-##-#& #.): Moved several flexbox materials over
from CSS - Layout; fixed bad ligatures; updated
screenshots for flex inside flex; updated theme to
Granneman 1.5; minor formatting fixes; switched out
flow stuff in float; removed 2nd table example; hid
2nd example for align-items: flex-start; fixed
chapter titles; added Grid stuff from CSS - Layout -
Grid

Changelog

!"#*-##-"! #.+: Corrected wording; applied
Granneman 1.4 theme; fixed minor issues; mentioned
Grid
!"#)-##-," #.,: Further corrections to make things
easier to understand
!"#)-##-#* #.!: Revised & corrected
!"#)-##-"+ #.#: Created presentation by pulling in
parts of others & adding new stuff

Licensing of this work

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

You are free to:

» Share — copy and redistribute the material in any medium or format
» Adapt — remix, transform, and build upon the material for any purpose, even commercially

Under the following terms:

Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use. Give credit to:

Scott Granneman • www.granneman.com • scott@granneman.com

Share Alike. If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

No additional restrictions. You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

Questions? Email scott@granneman.com

