
Responsive Web Design
From Soup to Nuts

© 2017 R. Scott Granneman
Last updated 2023-05-15

You are free to use this work, with certain restrictions: CC BY-SA 4.0
For full licensing information, please see the last slide/page

R. Scott Granneman r Jans Carton

1.14

What is
Responsive

Web Design?

“… a web design approach aimed at crafting sites to
provide an optimal [user] experience—easy reading
and navigation with a minimum of resizing, panning,
and scrolling—across a wide range of devices (from
mobile phones to desktop computer monitors)”
—Wikipedia

Media Types
r Media
Features

@media Queries

You’ve been creating CSS like this:

body {

 background-color: #111;

 color: #eee;

}

A dark background with light text looks cool on a digital
screen — but what if you want to print that page on
paper?

You’ve been creating CSS like this:

.container {

 display: flex;

 }

aside {

 font-size: .9rem;

}

This will look the same on a desktop, a tablet, & a phone 
— but what if you want it to look different on each?

You can specify that different CSS should be used when
a webpage is printed, or if the webpage is being looked
at via a desktop, tablet, or phone Web browser

How?

By using the @media at-rule with a media query

Default for screens:

body {

 background-color:

 #111;

 color: #eee;

}

When printing:

@media print {

 body {

 background-color:

 white;

 color: black;

 }

}

Applies to all devices:

.container {

 display: flex;

 }

aside {

 font-size: .9rem;

}

Applies only to phones:

@media (max-width:

767px) {

 .container {

 flex-direction:

 column;

 }

 aside {

 font-size: 1rem;

 }

}

A media query allows you to change how content is
presented on different devices without having to change
the content itself

One example used @media print, a media type

The other used @media (max-width: 768px), a media
feature

A media query consists of…

» an optional media type (a device; e.g., print or
screen)

» zero or more media features (a test for a single,
specific feature of the device or browser; e.g., max-
width or orientation)

@media 9 1 1.3 3.1 1 1

Media
Features

9 3.5 4 3.2 21 2.1

Using @media Queries

2 ways to specify media queries

» Link to multiple style sheets using <link>
» Within a stylesheet

Method 1: Link to multiple style sheets

<head>  
 <link rel="stylesheet" href="main.css">  
 
 <link rel="stylesheet" href="print.css"

media="print">  
</head>

<head>

 <link rel="stylesheet" media="screen"

href="screen.css">

 <link rel="stylesheet" media="(max-width:

800px)" href="small-screen.css">

</head>

You probably do not want to link to multiple style
sheets

Why? Each one is an extra server call — even if the style
sheet will not be used!

Method 2: Put the media-specific rule sets at the end of
your main stylesheet

Step 1: create a single style sheet & link to it in <head>

<head>  
 <link rel="stylesheet" href="/css/main.css">  
</head>

(This should be pretty normal!)

Step 2: Put style rules for everything at the top, with
specific @media style rules at the end

[styles for all media]

@media print {  
 [styles for print]  
}

html {  
 font-size: 16px;

 background-color: black;  
}

aside {

 width: 12rem;

}

@media print {  
 html {  
 font-size: 12pt;

 background-color: white;  
 }

 aside {

 display: none;

 }  
}

General style rules

@media style rules

A media query is either true (apply it!) or false (ignore
it!)

Media queries are applied first (to filter out unneeded
style rules), & then the rendering engine applies the
CSS Cascade

Therefore, you want to put the media queries after the
main style rules

!This is important!!

✏ SIDE NOTE

Why should the media-specific style rules come after
the general style rules?

Using the Cascade…

1. Importance is tied (it’s all by an author)
2. Specificity is tied (as long as the media-specific

declaration is the same as the general declaration — 
& remember, @media itself doesn’t change specificity)

3. Order therefore means that the media-specific
declaration wins

Media Types

“A media type is a broad category of user-agent devices
on which a document may be displayed. ” —Media
Queries Level 4, W3C

Media Queries Level 4* defines these media types

» print: printers & Print Preview
» speech: screen readers for visually disabled users, not

browsers (was aural)
» screen: “all devices that aren’t matched by print or

speech”
» all: all media type devices (default)

* Editor’s Draft as of March 13, 2023

Deprecated media types that now do nothing:

» braille: Braille tactile feedback devices
» embossed: paged Braille printers
» handheld: small or handheld devices
» projection: projected presentations
» speech: screen readers
» tty: fixed-pitch character grid (teletypes & terminals)
» tv: television-type devices

DEPR
ECATED

“It is expected that all of the media types will also be
deprecated in time, as appropriate media features are
defined which capture their important differences.”
—Media Queries Level 4, W3C

Common Print Styles

The following styles are common — a lot of print style
sheets use these — but are not required

They are here to give you ideas about what you can use

@media print {

 aside,

 nav,

 .ad-banner {  
 display: none;  
 }

}

Most of your print styles will probably be removing
things

@media print {

 html {

 font-size: 12pt;

 background-color: white;  
 color: black;  
 }

}

@media print {

 a[href] {  
 color: black;  
 text-decoration: underline;  
 }

}

Make all links black & underlined

@media print {

 a[href]::after {  
 color: black;  
 text-decoration: underline;  
 content: " (" attr(href) ") ";  
 }

}

When printed, <a href="http://www.hplovecraft.com/
writings/">Writings looks like this:

Writings (http://www.hplovecraft.com/writings/)

http://www.hplovecraft.com/writings/

#PRO TIP

Only use that technique for specific areas of a webpage,
if you use it at all!

It can be very ugly & overwhelming & make the text
much harder to read

Long links do not wrap

@media print {

 h1, h2, h3, h4, h5, h6 {  
 color: black;  
 padding-bottom: 1px;  
 border-bottom: 1px solid black;

 page-break-after: avoid;

 break-after: avoid;  
 }

}

When printing, put a nice border under headings, & do
not allow pages to break immediately after them

@media print {

 h2,

 h3,

 p {

 orphans: 3;

 widows: 3;

 }

}

Avoid widows & orphans (see CSS Layout Condensed
for more info)!

@media print {

 img,

 tr {

 page-break-inside: avoid;

 break-inside: avoid;

 }

}

When printing, don’t allow or <tr> to break
across pages

#PRO TIP

To test print styles, use Print Preview instead of actually
printing

Media Features

You can limit the style sheet’s scope based on feature
names, such as width, height, & color

Almost all feature names can be prefixed with…

» min-: equal to or greater than
» max-: equal to or less than

Terms

@media (min-width: 768px) {

 .hamburger-nav {

 display: none;

 }

}

min-width is a feature name

(min-width: 769px) is an media feature

If the media (in this case, the viewport) has a min-width
of 769px, then the style rules are applied to it

@media (orientation: portrait) {

 .sidebar {

 float: none;

 }

}

orientation is a feature name

(orientation: portrait) is an media feature

If the media (in this case, the viewport) has an orientation
of portrait, then the style rules are applied to it

@media (min-width: 700px) and (orientation:

landscape) {

 …

}

You can create a media condition that combines 2 or
more media features with a logical operator (and, not,
only, & or)

@media (min-width: 700px) and (orientation:

landscape) {

 …

}

min-width & orientation are feature names

(min-width: 700px) & (orientation: landscape) are
media features

If the media has a min-width of 700px AND an orientation
of landscape, then the style rules are applied to it

Viewport- & Device-Centric

Media features are either:

» viewport-centric (which we care about for responsive
web design), or

» device-centric (for special cases)

Viewport-centric

» width: width of viewport
» height: height of viewport
» aspect-ratio: <ratio> of horizontal pixels to

vertical pixels of viewport ! See Bonus
» orientation: landscape or portrait

min-width & max-width are
essential to responsive design!

Device-centric media features include:

» Display quality, e.g., resolution or scan (for TV; e.g.,
interlace or progressive)

» Color, e.g., monochrome
» Interaction, e.g., any-pointer or hover

For a longer list, see Bonus

Grids in
Design

1961

Grids are composed of columns & rows, & (commonly)
gutters

“Orchestra”
spans 4
columns

The title
spans 3 rows
& 4 columns,
but note how
it is all
symmetrical

2010

Why use a grid system?

Elements line up

Proportion

Makes things easier for designers (& editors)

Particularly suited for how web rendering engines work

Rule of Thirds

Rule of thumb or guideline for images, designs, &
websites

First named by John Thomas Smith in Remarks on
Rural Scenery (1797)

“… an image should be imagined as divided into nine
equal parts by two equally-spaced horizontal lines &
two equally-spaced vertical lines … important
compositional elements should be placed along these
lines or their intersections” —Wikipedia

Settings > Camera >
Grid

Open Camera app > ⋮ >

Grid/Grid Lines/Assistive
Grid

Grid-Based
Frameworks

Some grid-based frameworks

» Bootstrap
» Foundation
» Tailwind
» Materialize
» Bulma
» UIkit (minimalist)

Good list at en.wikipedia.org/wiki/CSS_frameworks

http://en.wikipedia.org/wiki/CSS_frameworks

What’s a framework?

“A CSS framework is … meant to allow for easier, more
standards-compliant web design using … Cascading
Style Sheets… Most of these frameworks contain at
least a grid. More functional frameworks also come
with more features and additional JavaScript based
functions, but are mostly design oriented and
unobtrusive.” —Wikipedia

Advantages

» Quicker development process
» Should include many well thought out design patterns
» Usually tested across multiple browsers

Disadvantages

» Often lots of unused code in the framework, so can be
bloated

Bootstrap

“Bootstrap is a free and open-source CSS framework
directed at responsive, mobile-first front-end web
development. It contains HTML, CSS and (optionally)
JavaScript-based design templates for typography,
forms, buttons, navigation, and other interface
components.

As of December 2022, Bootstrap is the 14th most
starred project … on GitHub, with over 161,000 stars.
… Bootstrap is used by 19.2% of all websites.”
—Wikipedia

MSNBC

PayPal

GoDaddy

Wal-Mart

NASA

StumbleUpon

PHP.net

Business Insider

Constant Contact

Dell

Reuters

iStock

Home Depot

Digg

SugarSync

Fender

NBA

Target

Bloomberg Business

Codeacademy

Newsweek

Healthcare.gov

BitBucket

Visual Studio Code

Bootstrap 1: 2011

Bootstrap 2: 2012

Bootstrap 3: 2013

Bootstrap 4: 2018

Bootstrap 5: 2021

Bootstrap 6: ?

SIDE NOTE

Bootstrap used to be called Twitter Bootstrap

2 developers at Twitter created Bootstrap, & Twitter
sponsored it for a while

Twitter never actually used Bootstrap on its website!

Fluid Designs

Layout resizes to fit the display

body {  
 width: 100%;  
 margin: 0 30px;

}

 
.column1, .column2, .column3 {  
 width: 31.3%;  
 float: left;  
 margin: 1%;

}

31.3×3=93.9

1×6=6

93.9+6=99.9

Advantages

» Adapts to most screen resolutions & devices

» Reduces user scrolling

» Allows for users on smaller displays while being
optimized for larger displays

Disadvantages

» Challenging to read when text spans a wide distance

» Harder to execute successfully

» Limits imposed on whitespace

» Horrible on mobile & high resolution (retina) devices

Fixed Designs

Layout has same width on every display

body {  
 width: 960px;  
 margin: 0 auto;

}  
 
.column1, .column2, .column3 {  
 width: 300px;  
 float: left;  
 margin: 10px;

}  

300×3=900

10×6=60

900+60=960

Advantages

» Gives designer more control over how an image
floated within the content will look

» Allows for planned whitespace

» Improves readability with narrower text blocks

Disadvantages

» Can appear dwarfed in large browser windows

» Takes control away from users (or is this an
advantage?)

Mobile
Designs

Mobile Site

Create 2 different sites with different HTML, CSS, &
content:

» 1 for desktops (www.foobar.com)
» 1 for mobile (m.foobar.com)

Browser sniffing on the server determines which site
is served

Adaptive Design

AKA reactive design & progressive enhancement

Create 3 sites (at 1 URL) with the same content, but
different HTML & CSS:

» A basic site without CSS or JavaScript for older, low-
end devices

» A site with CSS & JavaScript appropriate for mobile
» A site with CSS & JavaScript appropriate for desktops

Browser sniffing on the server determines which site
is served

Zooming

2007

2007

Responsive Design

Create 1 site (at 1 URL) with the same content & HTML,
but the CSS changes depending upon the width of the
browser’s or device’s viewport, e.g.:

» Phones
» Phones in landscape
» Tablets in portrait
» Tablets in landscape
» Small desktops & laptops
» Desktops & laptops

Width detection is done on the client, not the server

All layout is based on columns, & elements may span
multiple columns

Responsive
Layouts

“… a web design approach aimed at crafting sites to
provide an optimal [user] experience—easy reading
and navigation with a minimum of resizing, panning,
and scrolling—across a wide range of devices (from
mobile phones to desktop computer monitors)”
—Wikipedia

Bootstrap uses 12 columns to lay out the webpage

Why 12 & not 10? or 20? or 5?

Because with 12 you can divide by thirds (4, 4, 4) &
fourths (3, 3, 3, 3), which are very common layout
patterns, as well as any other combination

Both the cards above & the footer below are divided into thirds

These cards are divided into fourths

Layouts have to change at different viewport widths to
look good & function well

A breakpoint is the width at which a layout change
occurs

You can create your own breakpoints (using media
queries, of course)

Frameworks have pre-defined breakpoints ready for
you

Bootstrap 3 (2013)

Desktops lg ≥1200 px

Tablets
(landscape)

md ≥922 px

Tablets
(portrait)

sm ≥768 px

Phones xs <768 px

These are common
breakpoint sizes at
which layout
changes occur

Issues with responsive design

» Conceptual & coding complexity

» Integration with 3rd party services can be
problematic if they’re not built to be responsive
(thanks, Google Calendar ò_ó)

» More designs for each breakpoint (so more money &
time)

Before responsive design, websites normally needed
designs for 2 templates*: the home page & every other
page

Now we need at least 8: 4 for the home page & 4 for
every other page, 1 for each breakpoint

*Sometimes a site required more; the Saint Louis Zoo, for instance, needed a template for animal
detail pages

Before responsive design

Responsive design

lg

md

xssm

The
Magic Tag

If you want to build a responsive website — whether you
use Bootstrap or not — your webpage must have the
magic tag in it

The magic tag makes all responsive design possible

<meta name="viewport" content="width=device-

width, initial-scale=1">

By default, mobile browsers zoom websites so that they
fill the device screen

However, when you responsively design a website, you
do not want it to zoom—you want it to display
responsively!

<meta name="viewport" content="width=device-

width, initial-scale=1">

Essentially, putting this in your <head> tells the
browser that it should not zoom, & that you will handle
how it looks in the browser yourself (by using
responsive design)

<meta name="viewport" content="width=device-

width, initial-scale=1">

width=device-width

Tells browser that the website adapts to the browser’s
width, so the width of the viewport should be equal to
the width of the device

initial-scale=1

Sets the initial zoom level: 1 CSS pixel is equal to 1
viewport pixel, ergo, do not zoom

Installation
& Setup

3 ways to connect to Bootstrap in your projects

1. Manually download Bootstrap & copy the files into
your project

2. Link via CDN to Bootstrap’s files online ! What
we’re doing!

3. Install via package manager like npm, yarn, gem,
composer, or NuGet

Manually Download

Advantages of downloading

» Available offline
» Can open & read Bootstrap CSS & JS files
» Can install using package manager (e.g., Bower or NPM)

Disadvantages

» You have to manage Bootstrap files
» You have to make sure your templates match your files &

folders

» I have to take extra time with students $

Download & Install

Remember, we are not doing this, so this is here for informational purposes

As of 20 April 2023

You will download a file named something like
bootstrap-5.3.0-alpha3-dist into your Downloads
folder

Unzip that file & extract the contents to its own folder

Mac users, just double-click on the zip file & you will
have a folder named something like bootstrap-5.3.0-
alpha3-dist

Windows users, right-click on bootstrap-5.3.0-
alpha3-dist & select Extract Here

After unzipping

Lots of extraneous files
we don’t need!

Get rid of any file…

» with .min.
» with .map
» with .esm.
» with .rtl. (unless you

are working with right-
to-left languages)

You want
bootstrap.bundle.js
instead of bootstrap.js
because it includes
JavaScript used by several
useful features in
Bootstrap

You want
bootstrap.bundle.js
instead of bootstrap.js
because it includes
JavaScript used by several
useful features in
Bootstrap

The final contents

Now move the CSS &
JavaScript files into your
project’s /css & /js
folders

✏ SIDE NOTE✏ SIDE NOTE

bootstrap.min.css

bootstrap.min.js

The .min stands for minified

What’s minification?

bootstrap.css

12,113 lines (!) — not minified

bootstrap.min.css

6 lines instead of 12,113 — that’s minified!

Template

Your <head> should look like this…

<head>

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible"

content="IE=edge">

 <meta name="viewport" content="width=device-

width, initial-scale=1">

 <title>Untitled</title>

 <link rel="stylesheet" href="/css/

bootstrap.css">

 <link rel="stylesheet" href="/css/main.css">

</head>

And your <body> like this…

<body>

 <h1>Hello, world!</h1>

 <script src="https://ajax.googleapis.com/

ajax/libs/jquery/1.11.2/jquery.min.js"></

script>

 <script src="/js/bootstrap.js"></script>

</body>

You must keep the JavaScript, or things will break (e.g.,
dropdown menus)

Make sure jQuery comes before any other JavaScripts
that depend on it (like bootstrap.js)

<script src="https://ajax.googleapis.com/ajax/

libs/jquery/1.11.2/jquery.min.js"></script>

<script src="js/bootstrap.js"></script>

Otherwise, leave the jQuery <script> alone

✏ SIDE NOTE

What is jQuery?

Most popular (73% of top 10 million websites!)
JavaScript library, designed to simplify client-side
scripting

Lots of other JavaScripts depend upon jQuery (like
Bootstrap)

The dependency upon jQuery is removed in Bootstrap 5

Link via CDN

✏ SIDE NOTE

What’s a CDN anyway?

“A content delivery network is a highly-distributed
platform of servers that responds directly to end user
requests for web content. It acts as an intermediary
between a content server, also known as the origin,
and its end users or clients. … Content Delivery
Networks, also known as CDNs, carry nearly half of the
world’s Internet traffic.” —Akamai’s CDN Learning
Center

✏ SIDE NOTE

Akamai is one of the largest CDNs in the world

Akamai serves 15–30% of all Web traffic

“The company operates a network of servers around the
world and rents capacity on these servers to customers
who want their websites to work faster by distributing
content from locations close to the user. When a user
navigates to the URL of an Akamai customer, their
browser is redirected to one of Akamai’s copies of the
website.” —Wikipedia

✏ SIDE NOTE

Akamai’s global reach

Advantages of linking

» Create or use a template with the right links & you’re
finished %

» Users already have it cached so it loads real quick like
» You do not have to manage extra files
» I do not have to take extra time with students

Disadvantages

» No Internet, no files &

» Cannot easily open & read Bootstrap CSS & JS files

Using Visual Studio Code?

Go to the Extensions View & install File Templates
Manager by Ivan Zakharchanka

✏ SIDE NOTE

FYI where templates are stored (in case you want to
back them up)


~/Library/Application Support/Code/User/

CodeTemplates/

⊞
%HOME%

\AppData\Roaming\Code\User\CodeTemplates\

Edit the current HTML template & copy over it with
mine:

HTML5 template: http://chnsa.ws/1b1

Create a new templates & use the following:

Bootstrap 5 CDN template: https://chnsa.ws/1wx

http://chnsa.ws/1b1

CDN

CDN

Using
Bootstrap

Bootstrap is really just a collection of pre-made CSS &
JavaScript for you to use with your site

Link to the default CSS in your <head> & the JavaScript
in <body>, & use the CSS classes that Bootstrap
provides in your HTML

Want to change Bootstrap’s default styles or scripting
behaviors?

Do not edit the default CSS & JavaScript!

Next time you upgrade, all your changes go poof

Instead, create your own CSS & link to it after you link
to bootstrap.css

<link rel="stylesheet" href="https://

stackpath.bootstrapcdn.com/…/

bootstrap.min.css" …>

<link rel="stylesheet" href="/css/main.css">

Override Bootstrap’s CSS as needed in your CSS

#PRO TIP

You would do the same thing with bootstrap.js

How do you know which Bootstrap classes to use, &
which classes do what?

bootstrap.css is ~9000 lines—do not read it!

Read the documentation at getbootstrap.com

So let’s say I want to make some images responsive &
interesting looking

1

2

3

?

Once you start using Bootstrap, you will sometimes
want to override its CSS

1. Use your browser’s Inspector to find the exact
selector & declaration that Bootstrap uses in
bootstrap.css

2. Copy that selector & declaration & then paste them
into your main.css

3. Enter a new value in the declaration

An easy example, with an easy selector

I decide to add rounded
corners to an image, so
I check out what class to
use at getbootstrap.com

I add it to my code

It looks OK, but I’d
like the corners to be
more rounded than
Bootstrap’s default

I open the browser’s
Inspector, select the
image, & see the rule
that Bootstrap has
defined

I edit my code, using the
same class name as
Bootstrap does, & change
the value of the border-
radius property

Thanks to the Cascade,
my changes have more
weight, so they win

Now the corners are
more rounded than
Bootstrap’s default!

Don’t be afraid to override Bootstrap — just do it in the
correct way

.25rem

.5rem

A more complex example

This page needs a
breadcrumb trail to
indicate hierarchy &
wayfinding

Bootstrap says to use this
HTML structure & these
CSS classes to create a
breadcrumb

I add it to my code

I really don’t like the /
that Bootstrap uses as a
default separator, since
it’s confusing & ugly

I open the browser’s Inspector,
select the breadcrumb, & see
the declaration Bootstrap uses

I want to change the / to an arrowhead, & I want to use
Unicode

To find a Unicode arrowhead, I head to
www.fileformat.info/info/unicode/char/search.htm

http://www.fileformat.info/info/unicode/char/search.htm

Select & copy

I edit my CSS, using the same
selector Bootstrap does, &
change only the value of the
content property with the
Unicode ➤

Much better — but the
gray for the active at
the end is too light, so let’s
darken it

I open the browser’s Inspector,
select the final , & see the
declaration Bootstrap uses

I edit my CSS, using the same
selector Bootstrap does, &
change only the value of the
color property from #6c757d
to #333

Since my CSS file comes after Bootstrap’s, I
win the Cascade because of Order (we’re both
authors, & we’re using the same selector, so
we tied on Importance & Specificity)

The Cascade

1. Importance

2. Specificity

3. Order

Much better — the darker
gray for the active
stands out more

However, if you download the Sass for Bootstrap,
you can edit the $breadcrumb-divider variable &
change the / to a ➤ — much easier!

Click on the link to
the Sass file to load it

Note the variables
we could’ve used 
— now we need
_variables.scss

And here you go

Grid System

When you lay things out using Bootstrap, you do not
use px or em or %

Instead, you use columns (that must add up to 12 in
Bootstrap 3 & may or may not in Bootstrap 4)

100%

100%

75% 25%

100%

100%

75% 25%

12 columns

12 columns

8 columns 4 col’s

Bootstrap 3

Desktops lg ≥1200 px

Tablets
(landscape)

md ≥922 px

Tablets
(portrait)

sm ≥768 px

Phones xs <768 px

Bootstrap 3 Bootstrap 4

Desktops lg ≥1200 px ≥1200 px xl Large desktops

Tablets
(landscape)

md ≥922 px ≥922 px lg Desktops

Tablets
(portrait)

sm ≥768 px ≥768 px md Tablets

Phones xs <768 px ≥576 px sm
Phones
(landscape)

<576 px *
Phones
(portrait)

Bootstrap 4 Bootstrap 5

≥1400px xxl
Really large
desktops

Large desktops xl ≥1200px ≥1200px xl Large desktops

Desktops lg ≥992px ≥992px lg Desktops

Tablets md ≥768px ≥768px md Tablets

Phones
(landscape)

sm ≥576px ≥576px sm
Phones
(landscape)

Phones
(portrait)

* <576px <576px xs
Phones
(portrait)

-lg

-md

-sm

-xs

-xs

Most common mobile screen resolution sizes
worldwide, February 2023

0%

3%

6%

9%

12%

360×640 360×780 393×873 412×915 414×896 390×844 360×800

Mobile Tablets Desktops

360×800 11.62% xs 768×1024 27.95% md 1920×1080 23.22% xxl

390×844 6.41% xs 810×1080 8.26% md 1366×768 16.28% xl

414×896 5.65% xs 800×1280 7.62% md 1536×864 10.76% xxl

412×915 5.47% xs 1280×800 6.77% xl 1280×720 6.07% xl

393×873 4.77% xs 601×962 4.66% sm 1440×900 5.93% xl

360×780 4.26% xs 820×1180 3.42% md 1600×900 3.22% xxl

Most common mobile screen resolution sizes worldwide,
February 2023

Columns go inside rows, & rows go inside containers

<main class="container">

 <div class="row">

 <article class="col-sm-8">

 …

 </article>

 <aside class="col-sm-4">

 …

 </aside>

 </div>

</main>

Column

Column
Row

Container

Content (e.g., text & images) goes inside elements with
CSS classes (e.g., col-md-8) that turn those elements
into columns & define…

» the size of the breakpoint at which changes to column
widths happen (e.g., -md)

» how many column widths they span, between 1–12
(e.g., -8)

Columns go inside elements with a CSS class of row

Rows go inside elements with a CSS class of container

<main class="container">

 <div class="row">

 <article class="col-sm-8">

 …

 </article>

 <aside class="col-sm-4">

 …

 </aside>

 </div>

</main>

<main class="container">

 <div class="row">

 <article class="col-sm-8">

 …

 </article>

 <aside class="col-sm-4">

 …

 </aside>

 </div>

</main>

Column

Column

<main class="container">

 <div class="row">

 <article class="col-sm-8">

 …

 </article>

 <aside class="col-sm-4">

 …

 </aside>

 </div>

</main>

Column

Column
Row

<main class="container">

 <div class="row">

 <article class="col-sm-8">

 …

 </article>

 <aside class="col-sm-4">

 …

 </aside>

 </div>

</main>

Column

Column
Row

Container

<body>

 <main>

 <div>

 <article class="col-sm-8"> … </article>

 <aside class="col-sm-4"> … </aside>

 </div>

 </main>

</body>

This does not work—no container & no row

<body>

 <main class="container">

 <div>

 <article class="col-sm-8"> … </article>

 <aside class="col-sm-4"> … </aside>

 </div>

 </main>

</body>

This does not work—no row

<body>

 <main>

 <div class="row">

 <article class="col-sm-8"> … </article>

 <aside class="col-sm-4"> … </aside>

 </div>

 </main>

</body>

This does not work—no container

<body>

 <main class="container">

 <div class="row">

 <article> … </article>

 <aside> … </aside>

 </div>

 </main>

</body>

This does not work—no columns

<body>

 <main class="container">

 <div class="row">

 <article class="col-sm-8"> … </article>

 <aside> … </aside>

 </div>

 </main>

</body>

This does not work—columns don’t add up to 12

<body>

 <main class="container">

 <div class="row">

 <article class="col-sm-8"> … </article>

 <aside class="col-sm-4"> … </aside>

 </div>

 </main>

</body>

This works!

Containers

The grid system requires an element with a class of
container on it to create a responsive container for
rows

<div class="container">

 ...

</div>

Containers are not nestable

Bootstrap 4 breakpoints & container widths

Size Devices Container Widths

xl Large desktops 1140px

lg Desktops 960px

md Tablets 720px

sm Landscape phones 540px

* Portrait phones 100%

Bootstrap 5 breakpoints & container widths

Size Devices Container Widths

xxl Really large desktops 1320px

xl Large desktops 1140px

lg Desktops 960px

md Tablets 720px

sm Landscape phones 540px

* Portrait phones 100%

Rows

Any element that is
going to have horizontal
groups of columns in it
must…

» be a child of the
container element

» have a class of row on it

<div

class="container">

 <div class="row">

 <article>

 …

 </article>

 <aside>

 …

 </aside>

 </div>

</div>

The container element can have other children
besides row elements

Anything that you always want to span the full width
of the container element does not need to be inside
the row element(s)

» Headings (e.g., <h1>)
» <header>
» <footer>
» Horizontal navigation bar

The only immediate children allowed inside rows?

Columns

Columns

Bootstrap 5.3 grid system

Remember those 12 columns that Bootstrap uses?

Content that is responsive (e.g., text & images) goes
inside elements with CSS classes (e.g., col-md-8) that
turn those elements into columns & define…

» the size of the breakpoint at which changes to column
widths happen (e.g., -md)

» how many column widths they span, between 1–12
(e.g., -8)

If all the columns will be
same width with every
viewport, you can just use
col

<div class="row">

 <div class="col">

 1 of 3

 </div>

 <div class="col">

 2 of 3

 </div>

 <div class="col">

 3 of 3

 </div>

</div>

If one column has a set
width & the others can
automatically resize, you
can easily accommodate
that

<div class="row">

 <div class="col">

 1 of 3

 </div>

 <div class="col-5">

 2 of 3

 </div>

 <div class="col">

 3 of 3

 </div>

</div>

HTML CSS

Written by you In bootstrap.css

class="col-lg-6" .col-lg-6 {}

class="col-md-6" .col-md-6 {}

class="col-sm-6" .col-sm-6 {}

class="col-xs-6" .col-xs-6 {}

Bootstrap is mobile-first

Therefore, the default width is always…

» 12 columns
which is the same as…

» 100% width
which is the same as…

» full width

Bootstrap is mobile-first

xxl xxl column inherits the size of the xl column

xl xl column inherits the size of the lg column

lg lg column inherits the size of the md column

md md column inherits the size of the sm column

sm sm column inherits the size of the xs column

xs A size is set for an xs column (e.g., col-xs-6)

Because the default width of a column is 12 (unless
overridden) & because column sizes are inherited from
xs up to lg, this would be unnecessary:

<div class="col-xs-12 col-sm-12 col-md-8

col-lg-8">

What should it be?

Because the default width of a column is 12 (unless
overridden) & because column sizes are inherited from
xs up to lg, this would be unnecessary:

<div class="col-xs-12 col-sm-12 col-md-8

col-lg-8">

What should it be?

<div class="col-md-8">

#PRO TIP

If you want an element to be 12 columns, you cannot do
this:

<div>

Bootstrap’s CSS isn’t invoked, so there are not any
columns

You must instead do this:

<div class="col-xs-12">

<div class="col">

15px gutter around each column

Size Name Device Column Width

Extra Small (xs) Phones Fluid

Small (sm) Tablets 60px

Medium (md) Tablets in portrait
& desktops

78px

Large (lg) Desktops 95px

Columns must go inside rows, & columns are the only
allowed children of rows

Rows go inside containers, but other children are
allowed inside containers

Containers cannot go anywhere inside other containers

Tools

Themes

Free

Commercial

Official

Testing

BrowserStack

Cross-browser testing live via the Web

Excellent service

www.browserstack.com

Thank you!

scott@granneman.com
www.granneman.com
ChainsawOnATireSwing.com
@scottgranneman

jans@websanity.com
websanity.com

Bonus

Media Types

Common Print Styles

a[href^="#"]::after,

a[href^="javascript:"]::after {

 content: "";

}

Don’t print links that are fragment identifiers or use the
javascript: pseudo protocol

When printed, Table of Contents
 looks like this:

Table of Contents

pre {

 white-space: pre-wrap !important;

}

When printed, allow <pre> to wrap

✏ SIDE NOTE

Certain CSS properties can be used with printing, but
are also available for layout, so look for the Multi-
Column Layout section in the CSS Layout presentation
for more info

» (page-)break-after
» (page-)break-before
» (page-)break-inside
» widows
» orphans

Media Features

Viewport- & Device-Centric

✏ SIDE NOTE

<ratio>

Represents aspect ratios (proportions) in media
queries: a positive <integer>, followed by /, followed
by a positive <integer>

No units!

✏ SIDE NOTE

Examples

4/3: traditional TV

16/9: widescreen TV

185/100: traditional movies

239/100: widescreen movies

✏ SIDE NOTE

<ratio> 9 3.5 5 4.2 4 Y

Device-centric: display quality

» resolution: pixel density of the output device
(infinite or <resolution>)

» scan: scanning process of television (interlace or
progressive)

» grid: grid device or a bitmap device (0 or 1)

<resolution>

Represents the resolution of a device: its density of
pixels, expressed as a <number> immediately followed
by a unit of resolution

Units
» dpi: dots per inch
» dpcm: dots per centimeter
» dppx: dots per px unit; 1dppx is equivalent to 96dpi

<resolution> 9 12 8 – – 29 4.4

dppx – 12 16 – – 29 4.4

dpi 9 12 8 – – 29 4.4

dpcm 9 12 8 – – 29 4.4

Device-centric: display quality

» update: frequency that layout can be updated (none,
slow, or fast)*

» overflow-block: treatment of potential overflow on
block axis (none, paged, optional-paged, or scroll)*

» overflow-inline: treatment of potential overflow on
inline axis (none, paged, optional-paged, or
scroll)*

* New additions from Media Queries Level 4

Device-centric: color media

» color: bit depth of a standard display (<integer>)
» color-index: number of colors in an indexed color

display (<integer>)
» monochrome: bit depth of monochrome display

(<integer>)
» color-gamut: range of available colors (srgb, p3, or
rec2020)*

* New additions from Media Queries Level 4

Device-centric: interaction

» pointer: primary pointing device? (none, coarse, or
fine)*

» any-pointer: any pointing device available? (none,
coarse, or fine)*

» hover: can primary pointing device hover over
elements? (none or hover)*

» any-hover: can any available pointing device hover
over elements? (none or hover)*

* New additions from Media Queries Level 4

Device-centric

» device-width: width of screen in pixels
» device-height: height of screen in pixels
» device-aspect-ratio: <ratio> of horizontal pixels

to vertical pixels of screen

DEPR
ECATED

Responsive Web Design
From Soup to Nuts

© 2017 R. Scott Granneman
Last updated 2023-05-15

You are free to use this work, with certain restrictions: CC BY-SA 4.0
For full licensing information, please see the last slide/page

R. Scott Granneman r Jans Carton

1.14

Changelog

2023-05-15 1.14: Added @media print around print
examples; added how to enable rule of thirds on iPhone
& Android; added charts showing most common screen
resolution sizes worldwide

Changelog

2023-04-20 1.13: Moved content from Fixed to Fluid to
Responsive here; moved content from Bootstrap here;
fixes & additions

2023-04-18 1.12: Moved content from CSS - Media-
Specific Styles here; crossed out speech, as it’s no
longer relevant; added lots of citations; moved stuff into
Bonus

Licensing of this work

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

You are free to:

» Share — copy and redistribute the material in any medium or format
» Adapt — remix, transform, and build upon the material for any purpose, even commercially

Under the following terms:

Attribution. You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your
use. Give credit to:

Scott Granneman • www.granneman.com • scott@granneman.com

Share Alike. If you remix, transform, or build upon the material, you must distribute your contributions under
the same license as the original.

No additional restrictions. You may not apply legal terms or technological measures that legally restrict others
from doing anything the license permits.

Questions? Email scott@granneman.com

